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Abstract

In the search for new particles in high-energy physics, it is crucial to select the
Signal Region (SR) in such a way that it is enriched with signal events if they
are present. While most existing search methods set the region relying on prior
domain knowledge, it may be unavailable for a completely novel particle that falls
outside the current scope of understanding. We address this issue by proposing
a method built upon a model-agnostic but often realistic assumption about the
localized topology of the signal events, in which they are concentrated in a certain
area of the feature space. Considering the signal component as a localized high-
frequency feature, our approach employs the notion of a low-pass filter. We define
the SR as an area which is most affected when the observed events are smeared
with additive random noise. We overcome challenges in density estimation in
the high-dimensional feature space by learning the density ratio of events that
potentially include a signal to the complementary observation of events that closely
resemble the target events but are free of any signals. By applying our method to
simulated HH → 4b events, we demonstrate that the method can efficiently identify
a data-driven SR in a high-dimensional feature space in which a high portion of
signal events concentrate.

1 Introduction

High-energy physics is a subfield of physics that studies fundamental particles and their interactions to
understand how matter and radiation in the universe are formed. At its core, the Standard Model (SM)
plays a central role in explaining the fundamental particles and their interactions. The remarkable
discovery of the Higgs boson by collaborations at the European Organization for Nuclear Research
(CERN) [1, 6] and its inclusion in the SM leads to a natural question about the possibility of new
particles and interactions beyond the SM. An important challenge in searching for new physics events
is to estimate the background distribution expected from the SM, which is to be compared with
the observed data to identify the existence of new signals. Perhaps the most prominent approaches
to background estimation are ABCD and sideband methods, and their variants [1, 3, 6, 8]. At the
center of these approaches, one selects the Signal Region (SR) where signal events are expected to
be concentrated, and the Control Region (CR) where signal events are expected to be nearly absent.
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Figure 1: Depiction of the variables used to represent a particle jet. pT is the transverse momentum, ϕ
is the azimuthal angle, and θ is the polar angle. The pseudorapidity is given by η = − log(tan(θ/2)).

Then, the background distribution is estimated from the CR and extrapolated to the SR to compare
with the observed data. Most existing methods invoke knowledge about the expected signals to select
the SR and CR. In detecting the Higgs boson, for example, the SR is configured to include the mass
range where the Higgs boson is expected to appear and the CR is configured to exclude the SR
[1, 3, 6].

For a completely new type of particle, however, we are likely to lack specific prior knowledge about
the signal events, which has led to extensive recent work on methods for model-agnostic signal
searches [4, 9, 11–14, 16]. In this case, setting up the SR and CR based on existing knowledge about
the signal is not feasible. This motivates us to develop a method to define the SR and CR only with
the observed data without relying heavily on prior domain knowledge about the signals. Rather, we
observe that signals tend to be localized in the feature space, which is an assumption that has been
commonly exploited in certain methods, namely “bump hunting” [2, 5, 9, 10].

For instance, the Higgs boson is expected to appear in a particular invariant mass range around
125 GeV. Motivated by this observation, we make a minimal assumption that the signal events are
localized in the (potentially high-dimensional) feature space and use this to propose a data-driven
way of selecting the SR and CR.

2 Problem Formulation

When two protons collide, they form highly unstable particles that decay within an extremely short
time frame, making them impossible to detect directly. Some of these transient particles decay into
quarks, which interact with the vacuum to produce collimated sprays of stable particles, referred to as
“jets”. Among all possible final states, we focus on events resulting in four jets.

Being able to detect jets efficiently, the Compact Muon Solenoid (CMS) detector at CERN records the
momentum and the invariant mass (or energy) of the particles produced in proton-proton collisions.
For the momentum of an observed particle, let (r, θ, ϕ) be its representation in spherical coordinates,
where θ ∈ [0, π) is the polar angle and ϕ ∈ [0, 2π) is the azimuthal angle. As visually explained in
Figure 1, the momentum vector is represented by a three-dimensional vector (pT , η, ϕ); pT := r sin θ
is the transverse momentum, or the magnitude of the momentum projected onto the xy-plane,
η := − log tan(θ/2) is the pseudorapidity. Writing the rest mass of a particle as m, the measured
features of an observed particle are represented as a four-vector (pT , η, ϕ,m) ∈ R4. As we are
concerned with collisions resulting in 4 jets, the corresponding events can be represented with
x = (piT , η

i, ϕi,mi)4i=1 ∈ R16, forming a 16-dimensional feature space X ⊂ R16.

The SM predicts a rare chance of a proton-proton collision producing two Higgs bosons, and in such
case, they are most likely to decay into four b-quarks which produce specific types of jets called
“b-jets”. This instance of interactions of particles is abbreviated as HH → 4b as it incorporates the
process of two Higgs bosons decaying into four b-jets. We refer to proton-proton collisions that are
tagged to have produced four b-jets as 4b events, and among them, we are interested in identifying the
existence of events corresponding to HH → 4b. In the sequel, we refer to these events as the signal
events, and the rest of the 4b events as the background 4b events. In addition to the 4b events, we have
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observations of events that are tagged to have produced three b-jets; we refer to these events as 3b
events and make the assumption that the signal we are looking for is not present among the 3b events.
We leverage the density ratio of 4b events to 3b events to select the SR and CR in the 16-dimensional
feature space. We elaborate further on this in Section 3.

We have access to n samples of 3b and m samples of 4b events, denoted by {X1
3b, . . . , X

n
3b} and

{X1
4b, . . . , X

m
4b}, respectively. Denote these distributions by

X1
3b, . . . , X

n
3b

iid∼ P3b, X1
4b, . . . , X

m
4b

iid∼ P4b = (1− ϵ)B4b + ϵS, (1)

where B4b and S are distributions (or probability measures) of background 4b and signal events,
respectively. We call ϵ the signal ratio, which is the fraction of signal events among the observed
events. Since a nonzero ϵ indicates the existence of a signal in the data, the problem of discovering
new physics boils down to testing the following hypotheses:

H0 : ϵ = 0 vs. H1 : ϵ > 0. (2)

Under the existence of the signal process, our goal is to select the SR, denoted by Xs ⊂ X , to be
rich in signals relative to its size, which can be expressed as amplifying S(Xs) compared to P4b(Xs).
This is important for improving the power of the test conducted on the signal region since a higher
concentration of signal should lead to a greater deviation from the null hypothesis.

3 Methodology

Learning Event Representations. An important factor to consider for our collision events is how
the four jets are naturally paired into two sets of two jets, according to the intermediate particle
from which each jet originates. In addition, there are symmetries in the feature space (reflection
symmetries in ϕ and η, as well as a rotational symmetry in ϕ) to be considered. To address the
complicated topology in the original feature space posed by these aspects, we exploit the classifier
architecture proposed by Manole et al. [15], which is designed to handle both the pairing of the jets
and the symmetries in the feature space. Informally speaking, the classifier is trained to separate 3b
events from 4b events and the last layer of the classifier calculates the probability of an event being a
4b event as opposed to a 3b event from inputs calculated by the previous layers. We use these inputs
to that last layer as the representations of events with the expectation that they exhibit a simpler
topology. We denote the representation of an event x as ζ(x), or simply ζ when the context is clear.

Finding the Data-Driven Signal Region. As mentioned in Section 1, we leverage the assumption
that the signal events are localized in the feature space, or the space of representations ζ. Recall that
signal events of our interest are tagged as 4b events. Hence, an area where signals are concentrated
would display a higher density of 4b events compared to 3b events. In the idealized case of the density
ratio of 4b events to 3b events being uniform across the feature space except at those locations, simply
selecting areas near the peak of (or area with the highest value of) the density ratio would be sufficient
to identify the SR.

Unfortunately, this is not the case in reality. It is possible that the density ratio in some areas of the
feature space is higher than the ratio in areas where the signal is concentrated, making those regions
merely local maxima of the density ratio. A plot on the upper left of Figure 2 illustrates this issue in a
low-dimensional toy example; the center of the signal does not necessarily have the highest value
of the density ratio. To address this issue, we leverage the fact that 3b events possess similar (but
not identical) kinematics to that of background 4b events [7], which allows us to postulate that the
density ratio of background 4b events to 3b events should only consist of “low-frequency” features.
Therefore, if the density ratio of all 4b events to 3b events possesses a localized “high-frequency”
feature, it would suggest the presence of a signal in the feature space. In other words, the density
ratio of all 4b events to 3b events would show a local maximum (or a peak) in the feature space where
signal events are concentrated.

We exploit this topology to find the SR and CR in the high-dimensional feature space. Motivated
by the notion of a low-pass filter, we consider extracting low-frequency components of the 4b
and 3b densities and then comparing the resulting density ratio with the original one to search for
high-frequency components. If we take a convolution kernel (e.g., Gaussian kernel) with adequate
bandwidth and convolve each density with it, we can obtain a smoothed version of the density ratio
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Figure 2: P3b = N (1, 42), P4b = 0.95B4b + 0.05S = 0.95N (−1, 42) + 0.05N (7, 0.52), and
K = N (0, 22). Signal events (with distribution S) are concentrated around ζ = 7 (dashed lines).
Looking at the largest values of γ (upper right) does not identify the center of signal events, but the
ratio γ/γ̃ (lower right) does.

that reflects only low-frequency components in the densities with features corresponding to the signal
suppressed. In mathematical terms, we define the density ratio and the smoothed density ratio as

γ(ζ) :=
p4b(ζ)

p3b(ζ)
, γ̃(ζ) :=

(p4b ∗K)(ζ)

(p3b ∗K)(ζ)
,

where p3b (resp. p4b) is the density of 3b (resp. 4b) events in the representation space, ∗ denotes the
convolution operation, and K is a convolution kernel. Remarkably, γ̃ can be efficiently estimated
by learning a classifier without directly evaluating the convolution operation. In particular, we can
estimate it by training a classifier to distinguish (Z3b + E , 0) and (Z4b + E , 1), where Z3b and Z4b

are the representations of 3b and 4b events, respectively, and E ∼ K is random noise.

A toy example shown in Figure 2 illustrates the concept of the smoothed density ratio. One can
observe that the center of signal events cannot be identified by selecting a region with the highest
value of γ, but rather by considering the ratio γ/γ̃. To this end, we define the data-driven SR as

Xs := {x | γ(ζ(x))/γ̃(ζ(x)) ≥ τs}. (3)

The threshold τs is specifically designed to control the size of the SR as measured by the proportion
of 4b events within those regions.

4 Results

In training classifiers to estimate density ratios, we used 3b event samples of size n ∈ {105, 106}
and the same size of 4b events. We used 75% and 6.25% of all the samples to estimate γ and γ̃,
respectively 1. To generate the training dataset for the smoothed density ratio γ̃, Gaussian noise was
added to the representations of each event, with noise scale in each dimension set to η ∈ {0.01, 0.1, 1}
times the length of the range of the corresponding representation.

Recall that our goal is to enrich the SR (i.e., Xs) with the signal, that is, to have a high portion of
signal events in the SR (i.e., S(Xs)) compared to the size of the SR measured by the portion of 4b
events in the SR (i.e., P4b(Xs)). In an ideal case, the curve should rapidly increase to 1 as the size of
SR increases. As Figure 3 suggests, our method can find an SR that shows such behavior, especially
when the signal ratio is high (left) or the sample size is large (center). Furthermore, the plot on
the right shows that setting η = 0.1 gives the best performance, demonstrating the importance of
choosing a convolution kernel whose size is aligned with the localized signal.

Figure 4 compares our method to a baseline SR proposed by Bryant [3]. The baseline SR is designed
to capture events with invariant masses of both intermediate particles close to that of the Higgs boson.
We emphasize that the baseline is aware of particular domain knowledge about the signal, which
we do not require. While Figure 4 shows a performance gap between the two methods, our model-
agnostic SR remains competitive, or even slightly better when the size of SR (P4b(Xs)) is small. In
hypothesis testing, it is crucial to limit the size of the SR to maintain a high signal-to-background ratio

1The rest of the samples were left for the hypothesis testing.
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Figure 3: Concentration of signal events in the SR for the HH → 4b data. x axis represents the
proportion of 4b events in the SR (measured by P4b(Xs)) and y axis represents the proportion of
signal events in the SR (measured by S(Xs)). As defined previously, n, ϵ, and η are the number of 3b
events, the signal ratio, and the scale of the convolution kernel, respectively. Bold lines and shaded
areas represent (mean) ± (standard deviation) measured through 10 repeated experiments.
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Figure 4: Comparison with the baseline SR provided by Bryant [3]. Bold lines represent the average
measured through 10 repeated experiments, and the shaded region represents the standard deviation
of our method (the baseline has an ignorable variance, which is hence omitted). While the baseline,
which has access to a priori knowledge of the location of the signal, shows better performance when
P4b(Xs) is large, the methods have comparable performance when P4b(Xs) is small.

in the region. From this perspective, our method achieves signal concentration that is comparable
with the baseline while requiring weaker domain-specific knowledge about the signal.

5 Discussion

The plot on the center of Figure 3 shows that an increase in the sample size leads to a better
concentration of signals in the SR, even when the signal ratio is fixed to a low value. This suggests
that our method has sensitivity for small signals as long as the sample size is large enough. We also
remark on the importance of choosing a convolution kernel introducing an optimal amount of noise
to the representations of events in learning the smoothed density ratio γ̃. If we choose the noise with
too large a scale compared to the size of a signal peak, the density ratio would be overly smoothed,
affecting the low-frequency features that we intend to preserve in γ̃. Conversely, using too small
noise would render γ̃ indistinguishable from the original density ratio γ. In both cases, we fail to
capture the peak we are searching for.

The current scope of our work does not include the estimation of the background 4b distribution and
the hypothesis testing (Equation (2)) to determine the presence of the signals in the SR. We plan to
extend our work to include these steps in future work.
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