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Abstract

Understanding the process of multiphase fluid flow through porous media is crucial
for many climate change mitigation technologies, including CO2 geological stor-
age, hydrogen storage, and fuel cells. However, current numerical models are often
incapable of accurately capturing the complex pore-scale physics observed in exper-
iments. In this study, we address this challenge using a graph neural network-based
approach and directly learn pore-scale fluid flow using micro-CT experimental
data. We propose a Long-Short-Edge MeshGraphNet (LSE-MGN) that predicts the
state of each node in the pore space at each time step. During inference, given an
initial state, the model can autoregressively predict the evolution of the multiphase
flow process over time. This approach successfully captures the physics from
the high-resolution experimental data while maintaining computational efficiency,
providing a promising direction for accurate and efficient pore-scale modeling of
complex multiphase fluid flow dynamics.

1 Introduction

Our society is facing unprecedented challenges in climate change, demanding swift action to acceler-
ate the energy transition toward net-zero [1]. Understanding the process of multiphase flow through
porous media is an important task as it is involved in many mitigation technologies, including CO2

geological storage ([2, 3, 4]), hydrogen storage [5], and fuel cells [6]. To study these multiphase flow
processes, scientists can utilize micro-CT scanners with synchrotron sources to image the rock pores
in a nanometer-scale spatial resolution while recreating the in situ condition of gas flowing through
the porous medium [7]. State-of-the-art research facilities can now generate 3D imaging data with
billions of voxels with temporal resolution on the order of second [8], creating a unique opportunity
to advance our understanding of fluid flow physics.

However, despite the advancement in experimental capability to obtain high-resolution experimental
data, the modeling of pore-scale multiphase flow in porous media remains very challenging. Current
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modeling approaches generally fall into three major classes: lattice-based models, continuum models,
and pore-network models [9]. The former two approaches incorporate the Navier-Stokes equation
to solve flow equations but are often highly computationally expensive [10]. Pore network models
simplify porous media into interconnected pores and throats [11], offering computational efficiency
but often lacking accuracy due to the complexity of the physics involved.

Machine learning-based approaches are emerging in recent pore-scale modeling studies [12, 13].
However, most existing studies aim to learn fluid flow physics from simulation data, which suffers
from significant drawbacks. Due to the aforementioned computational challenges in pore-scale
modeling, training datasets are often incapable of reflecting the accurate behavior of real-world
multiphase flow. They are often simulated with highly simplified pore geometry (e.g., packed
spheres [13]) or simplified physics (e.g., negligible viscous effects and assumptions of steady-state
flow). In addition, many previous approaches were designed based on convolutional neural networks
(CNNs) that are optimized for grid-like structures. As a result, they struggled with the irregular
geometries of complex pore structures (see example in Appendix A).

To address the challenges, here we propose the Long-Short-Edge MeshGraphNet (LSE-MGN), a
graph neural network (GNN)–based architecture for learning pore-scale fluid flow directly from
experimental data (Figure 1). Inspired by the MESHGRAPHNETS [14] architecture proposed by Pfaff
et al., we used graph structure to represent irregular pore structures, where nodes represent fluid
volume and edges represent fluid flow paths. Unlike CNNs, the graph-based representation can handle
complex geometries by passing messages only between connected nodes, ignoring nodes separated
by solid rock grains. Learning the fluid flow dynamics using a GNN-based architecture leverages
inductive biases to focus on local interactions between fluid and pore structures. This allows for
zero-shot generalisation to other boundary conditions [15] or bigger input fields through section-based
training [16]. Learning directly from experimental data allows us to replicate realistic flow phenomena,

Figure 1: (a) A section in the rock is used to train a GNN model fθ. It learns to predict the next
state based on its current state. (b) Five steps in the prediction pipeline: step 1. encoder that embeds
node and edge features into latent space; step 2. fine message passing with all edges; step 3. coarse
message passing only with long edges; step 4. fine message passing with all edges; step 5. a decoder
that outputs the final node states. (c) Node encoder. (d) Edge encoder. (e) Decoder.
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including those that remain beyond the reach of simulations due to incomplete understanding. Our
results demonstrate that LSE-MGN can effectively capture complex fluid behaviors and generalise
well across varying boundary conditions. Our approach provides a new paradigm to leverage the
extensive micro-CT experimental data to study pore-scale physics.

2 Data Description

The micro-CT multiphase flow experiment dataset used in here was collected at the Swiss Light
Source, Paul Scherrer Institute. During the experiment, the rock sample was exposed to filtered
polychromatic X-ray radiation originating from a 2.9 T bending magnet source, generating a spatial
imaging resolution of 2.75 µm and a temporal resolution of 2 s. The experiments were conducted
in a cylindrical carbonate sample, 5 mm diameter and 20 mm length. The sample was saturated
with brine (deionised water doped with 15wt.% KI to improve the X-ray contrast). Then nitrogen
and brine were injected simultaneously. X-ray images were acquired to capture the transition from
transient effects to steady-state flow. Each image took 2 s to acquire, and had a resolution of 2.75 µm.
For a complete experimental description see [8]. Steady-state was determined by a stable pressure
drop measured across the core. The greyscale X-ray images were segmented to extract the location of
the fluids present (gas and brine). This was done using the method described in [17]. The dataset was
published in Spurin et al. [8].

In this work, we focus on a 50×80×50 cube over 300-time steps characterised by highly intermittent
fluid flow, where the flow pathways through the pore space are constantly rearranging (Figure 1 (a)).
Fluid intermittency is a phenomenon that current numerical modeling techniques cannot accurately
capture.

3 Methodology

Graph construction. We constructed the input and output graphs using the 3D images segmented
into either rock or pore spaces. As shown in Figure 1 (b), the rock spaces were excluded from the
graph, and the pore spaces were represented as interconnected nodes. At time step t ∈ {0, ..., T},
each point i in the pore space is represented as a node with a feature vector vti defined as

vti = [gti , γ
t
i , zi, yi, xi, ψ

t
i ]
T , (1)

where gti ∈ {0, 1} indicate the state of a node (i.e., gas or liquid), and γti ∈ {0, 1} indicates whether
the node is at a gas-liquid interface. The spatial coordinates {zi, yi, xi} specify a node’s position in
the 3D pore space. ψt

i represents the percentage of gas nodes among the one-hop neighbors of node i.
We construct bidirectional edges by connecting nodes within a fixed radius R of the current node. In
this work, R is set to

√
3 to ensure that message passing respects the pore structure. With this setup,

a node can connect to a maximum of 27 surrounding nodes, including itself, as shown in Figure 3 (b)
in Appendix A. There are three distinct edge lengths, excluding the self-connection: 1,

√
2, and

√
3

units, respectively. Inspired by [14], we defined the edge attribute eij as

eij = [(zi − zj), (yi − yj), (xi − xj), ||((zi − zj), (yi − yj), (xi − xj))||2]T , (2)

which include the coordinates difference between two nodes and the l2 norm of the difference.

Model architecture. We propose the Long-Short-Edge MeshGraphNet (LSE-MGN) architecture
that predicts the gas/liquid distribution in pore spaces given the node and edge features at the previous
time step. At test time, we autoregressively generate a sequence of future states given the previous
state, as shown in Figure 1 (a). The model architecture is illustrated in Figure 1 (b), where we employ
the "encoder-processor-decoder" structure as inspired by Graph Network-based Simulators (GNS)
[15] and MultiScale-MeshGraphNets [18].

In the encoder, the node features are embedded in the latent vector of dimension 128 via a Multi-Layer
Perceptron (MLP). Similarly, an edge encoder embeds the raw edge feature of dimension 4 to a
latent vector of dimension 128, as shown in Figure 1 (d). The decoder predicts the fluid state at each
node with a binary node-level classification, as illustrated in Figure 1 (e). The node embeddings are
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transformed and summarised into a scalar value, then passed through a Sigmoid function. The final
output is the probability of the node being classified as a gas node.

In the multi-scale processor, we divided edges into two categories: long edge (
√
3) and short edge

(0, 1,
√
2). Nodes at both ends of the long edges are defined as pivotal nodes. Initially, node and

edge features are propagated along all edges to gather information from nearby nodes. Subsequently,
information is transferred only between pivotal nodes along the long edges, allowing pivotal nodes to
access information from distant nodes, thereby expanding their receptive fields. Finally, messages
from the pivotal nodes are ‘shared’ with nearby nodes by propagating messages along all edges
again. This is achieved using n fine processors that aggregate features along all edges, then m coarse
processors that propagate messages only along the long edges, and then another n fine processors
along all edges. The fine message-passing processor with residual connections is defined as,

e′ij ← eij + fW (eij , vi, vj) , v′i ← vi + fV (vi,
∑

j∈N (i)

e′ij), (3)

and the coarse processor defined as,

e′ij ← eij + fW (eij , vi, vj) · I(|eij | =
√
3), v′

i ← vi + fV (vi,
∑

j∈N (i)

e′ij) · I(|e′ij | =
√
3). (4)

Here e′ij and v′i denote the updated edge and node embeddings, respectively. vi represents the raw
embedding of a target node, while vj represents the raw embedding of a neighboring node of i.
I(|e′ij | =

√
3) filters for long edges in coarse processors. fW and fV are MLP layers.

The multiscale strategy not only increases the receptive field of each node but also enhances computa-
tional efficiency by reducing the number of edges in the coarse graph to less than 30% of those in the
original graph, thereby accelerating the training process. Unlike the MultiScale MeshGraphNets [18]
approach, our proposed long-short-edge message passing does not require pre-computed fine and
coarse graphs and two additional networks for exchanging information between these graphs, which
allows easier implementation.

A comparative analysis of loss functions is provided in Appendix C, in which we found that the soft
Dice BCE loss (originally defined in [19] and described in Eq. (5)), with LBCE specified in Eq. (8)
and LDice in (9), demonstrates the best overall performance on our dataset.

LSoft BCE Dice (y, ŷ) =
N − n
N
LBCE (y, ŷ) +

n

N
LDice (y, ŷ) (5)

4 Results

The training set comprises 20 time steps during which a bubble gradually emerges, alongside 20
additional steps with minor bubble oscillation. The model is evaluated to distinguish between these
two scenarios on the testing set, which includes 8-time steps with emerging bubbles and 8-time steps
with minor oscillation. The model is trained for 22.5 hours using one NVIDIA A100 GPU (80GB)
graphics card. Stochastic gradient descent (SGD) with momentum was used for optimisation, with a
learning rate of 0.001. Figure 2 visualises the ground truth and the autoregressive rollout. The model
not only accurately captures bubble emergence, but also predicts minor oscillations, as shown in
Figures 4 and 6.

ϵτ =
|Âτ −Aτ |

Aτ
(6)

ϵ̄ =
1

tT − t0

tT∑
τ=t0

ϵτ (7)
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Figure 2: Visualisation (see video) of ground truth and autoregressive rollout from t = 221 to 229 on
the testing set with emerging bubbles. Red parts represent gas. Blue parts represent liquid.

We define the mean surface area error, ϵ̄, as a metric to evaluate the performance of different loss
functions, as shown in Eq. (7). In this equation, τ denotes the time step involved in the prediction,
ranging from the initial time step t0 to the final time step tT . The term ϵτ , defined in Eq. (6),
represents the percentage surface area error at a given time step τ . In this context, Âτ denotes the
surface area of prediction while Aτ denotes that of ground truth.The surface area calculation for each
time step is detailed in Algorithm 1. Table 1 compares validation performance of different model
configurations, indicating that F6C6F6 achieves the lowest mean surface area error with a reasonable
training time.

Table 1: Comparison of validation performance on different model configurations based on training
using a 20-time step dataset. The mean surface area error (defined as Eq. (7) was evaluated on a
9-time step test set. FnCmFn denotes n fine, m coarse, followed by n fine message-passing layers.

Metric / Configuration F9C0F9 F7C4F7 F6C6F6 F4C10F4

Training time (seconds/epoch) 24.88 21.72 20.02 16.74
Mean surface area error ϵ̄ (defined as Eq. (7)) 10.40% 9.05% 8.81% 10.10%

5 Conclusion

We introduced a new paradigm for learning the physics of multiphase flow through porous media
directly from experimental datasets. The LSE-MGN architecture successfully predicts the gradual
emergence of bubbles and instances with minor oscillations, relying solely on local information. The
results here sets the foundation for a promising direction in future pore-scale modeling.
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A Pore structure

As illustrated in Figure 3 (a), node 1 cannot directly transmit information to node 13 due to the
obstruction posed by the solid rock between them. Instead, the information must be relayed through
a sequence of intermediate nodes, such as following the path 1 → 3 → 5 → 7 → 9 → 11 → 13.
This routing is necessary to bypass the blockage created by the rock. Figure 3 (b) illustrates how
neighbours are defined during the graph construction process. Nodes are considered as neighbors
if they are within a distance of

√
3 units from one another. Each node can connect to up to 27

neighbouring nodes. On average, within the selected section of the pore space, each node is connected
to approximately 23.2071 neighbours.

Figure 3: (a) An example of a cross section of a porous rock showing gas and liquid particles
separated by solid rocks. (b) Edge formation: connect nodes within

√
3 units apart.

B More visualisation of the prediction

Figure 4: Visualisation (see video) of ground truth and autoregressive rollout from t = 288 to 296 on
the testing set with minor oscillations. Red parts represent gas. Blue parts represent liquid.

Figure 5: Visualisation (see video) of ground truth and autoregressive rollout from t = 61 to 69 on
the training set with emerging bubbles. Red parts represent gas. Blue parts represent liquid.
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Figure 6: Visualisation (see video) of ground truth and autoregressive rollout from t = 198 to 206 on
the training set with minor oscillations. Red parts represent gas. Blue parts represent liquid.

C Loss functions comparison

We compared different loss functions mentioned in [19][20][21][22] on our training and validation
sets . The training set includes 20 time steps with gradually emerging bubbles, while the validation
set consists of 9 time steps with similar gradual bubble emergence.

LBCE (y, ŷ) = −
1

M

M∑
i=1

[yilogŷi + (1− yi)log (1− ŷi)] (8)

LDice (y, ŷ) = 1− 2|y ∪ ŷ|
|y|+ |ŷ|

= 1− 2⟨y, ŷ⟩
⟨y, y⟩+ ⟨ŷ, ŷ⟩

(9)

LTversky (y, ŷ) = 1− 2|y ∪ ŷ|
α|y|+ β|ŷ|

= 1− ⟨y, y⟩
⟨y, y⟩+ α⟨y, 1− ŷ⟩+ β⟨1-y, ŷ⟩

(10)

LHard BCE Dice (y, ŷ) =
{
LBCE (y, ŷ) , if n < 0.9N

LDice (y, ŷ) , Otherwise
(11)

LDistance map + BCE (y, ŷ) =
1

N

N∑
i=1

(1 + Φ)⊙ LBCE (y, ŷ) (12)

LDistance map + Soft Dice BCE (y, ŷ) =
1

N

N∑
i=1

(1 + Φ)⊙ LSoft BCE Dice (y, ŷ) (13)

Lfocal (y, ŷ) = −
N∑
i=1

αi (1− ŷi)γ yi log ŷi (14)

Eq. (8) shows the Binary Cross-Entropy (BCE) loss, which measures the difference between two
probability distributions but struggles with imbalanced data. Dice loss (see Eq. (9)) addresses this
imbalance by considering the intersection and union of ground truth and predictions, though it may
be less accurate than BCE alone. Tversky loss (see Eq. (10)) adjusts the weighting of false positives
and false negative. Combining BCE and Dice loss, as in Eq. (5) and Eq. (11), improves performance
by balancing accuracy and data imbalance.

The distance map indicates the distance of points with value 0 to the nearest point with value 1,
serving as a weight to penalise points near the gas-liquid boundary more heavily. It can be combined
with BCE and soft Dice BCE, as shown in Eq. (12) and (13). Additionally, focal loss (see Eq. (14))
emphasises ‘hard’ examples by reducing the loss contribution of easy samples.

Table 2 compares the mean surface area error of various loss functions on training and validation sets.
The training set consists of 20 time steps and the testing set consists of 9 time steps. The soft dice
BCE loss achieves the lowest mean surface area error on both sets, making it the preferred choice in
our work.
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Table 2: Comparison of mean surface area error ϵ̄ using different loss functions on training and testing
sets. The surface area error for each time step is calculated as shown in Eq. (6). The reported error is
the average across all time steps in autoregressive rollout (see Eq. (7)).

Loss function ϵ̄ (Testing) ϵ̄ (Training)

Soft dice bce 0.0988 0.0567
Hard dice bce 0.1269 0.0941

Distance map + bce 0.1310 0.0840
Distance map + soft dice bce 0.1550 0.1326

Focal loss 0.1122 0.0983
Tversky loss 0.2086 0.2510

Dice loss 0.2120 0.2442
BCE loss 0.1502 0.1272

Algorithm 1 Calculate Surface Area of a 3D Mesh in One Time Step
Require: A 3D binary fluid dataset representing the spatial distribution of fluid within a volume.
Ensure: The total surface area of the generated 3D mesh.

1: Use the Marching Cubes algorithm to extract the 3D mesh from the input binary fluid data. This
process computes a set of vertices V = {v1, v2, . . . , vn} and a set of faces F = {f1, f2, . . . , fm}
that define the geometry of the mesh.

2: Initialise the total surface area: A← 0
3: for each face f ∈ F do
4: Identify the three vertices v1, v2, v3 that form the triangular face f .
5: Compute the edge vectors: a⃗← v2 − v1 and b⃗← v3 − v1.
6: Calculate the cross product of the edge vectors: c⃗← a⃗× b⃗, which is perpendicular to the plane

of the triangle.
7: Compute the area of the triangle: Atriangle ← 1

2 ∥c⃗∥, where ∥c⃗∥ is the magnitude of the cross
product vector, giving twice the area of the triangle.

8: Accumulate the triangle area into the total surface area: A← A+Atriangle
9: end for

10: return A {Return the total surface area of the 3D mesh}

D Links of visualisation videos

Visualization videos for Figures 2 through 6 can be viewed by clicking the hyperlinks. If the YouTube
links are not functional, the corresponding URLs are provided below for direct access.

• Figure 2: https://www.youtube.com/watch?v=CyOpiv1anCY
• Figure 4: https://www.youtube.com/watch?v=hbbWUJxL3ng
• Figure 5: https://www.youtube.com/watch?v=nm4u_G7pOcs
• Figure 6: https://www.youtube.com/watch?v=Rp_eI_iVqrY
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