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Abstract

Accurate prediction over long time horizons is crucial for modeling complex
physical processes such as wave propagation. Although deep neural networks
show promise for real-time forecasting, they often struggle with accumulating
phase and amplitude errors as predictions extend over a long period. To address
this issue, we propose a novel loss decomposition strategy that breaks down the
loss into separate phase and amplitude components. This technique improves the
long-term prediction accuracy of neural networks in wave propagation tasks by
explicitly accounting for numerical errors, improving stability, and reducing error
accumulation over extended forecasts.

1 Introduction

Accurate long-horizon predictions are essential for understanding and modeling complex physical
phenomena, particularly in the context of wave propagation governed by partial differential equations
(PDE?¢) [17]. Traditional numerical methods for solving PDEs, such as finite difference, finite element,
and spectral methods, have been extensively studied and applied [2]] to solve the wave equation.
Although these methods are effective, they often require substantial computational resources, making
them unsuitable for real-time predictions and control related tasks.

Machine learning techniques, particularly deep neural networks, have emerged as powerful tools for
modeling complex physical phenomena, including wave propagation and underwater noise prediction
[6} 151 9L [7, 18]]. Despite their success in numerous domains, neural networks often struggle with
accurate long-term predictions, primarily due to accumulated phase and amplitude errors [16} 11} [13]].
This issue is particularly pronounced in autoregressive models, where errors can compound over time,
leading to significant deviations from the true dynamics [20, 4].

Recent studies have highlighted the importance of loss decomposition in addressing these challenges.
Traditional mean squared error (MSE) loss functions do not distinguish between different types
of prediction errors, such as phase and amplitude errors, which are critical to accurate long-term
forecasting [[15} 21 3]. To mitigate this, we propose decomposing the MSE into dissipation and
dispersion errors [[12]], which separately account for the amplitude and phase errors, respectively. By
explicitly considering these error types, our approach aims to enhance the neural network’s ability to
maintain accurate predictions over extended horizons.

The concept of loss decomposition is not entirely new; it has been previously explored in numerical
analysis and signal processing. For example, Kreiss and Oliger [14] introduced the idea of dissipation
and dispersion errors in the context of finite difference methods. More recently, Guen et al. [13]]
applied similar ideas to machine learning, suggesting that decomposed loss functions can guide
neural networks to learn more robust representations of time series forecasting. Our work builds on
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these ideas by specifically targeting the phase and amplitude errors that hinder long-term predictions
in neural networks for wave propagation tasks. By integrating the perspective of numerical errors

into machine learning techniques, we introduce a novel theoretical framework aimed at improving
long-term predictions.

2 Methods

2.1 Linear advection equation

In this study, we focus on data generated from the linear convection equation as a model problem
for wave propagation. Although the approach has been applied to the inviscid Burgers equation to
investigate nonlinear wave propagation, we limit our discussion to the linear convection equation for

brevity. The solution U in the domain £ = [0, 1] satisfies the following parametric partial differential
equation:

oU oUu .

E + MaiX =0 in Q, (1)
with the initial condition:

U(z,0) = Up(z) = f(x), 2

where € [0.775,1.25] represents the wave speed. The initial profile is given by f(z) =

( \/2177) e~*"/29 with 0 = 5 x 10~3. A one-dimensional spatial discretization of 256 grid points
and 200 time steps is applied. The training set consists of IV,, = 20 parameter instances, uniformly
distributed over the range of ., while the test set includes Ny = 19 parameter instances. The test

parameters are selected such that fies i = w fori =1,..., Nex. A visual representation
of this dataset is provided in Figure[]
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Figure 1: Schematic of dataset generation. Linear convection simulations were generated for
parameter wave speed. Amplitude data were extracted and arranged into a training snapshot matrix.

2.2 Attention-based Convolution Recurrent Autoencoder Network

We employ a deep learning architecture to model wave propagation, specifically utilizing a 15-layer
Attention-Based Convolutional Recurrent Autoencoder Network [6} [T0]. The encoder includes a
convolutional layer, followed by max pooling and fully connected layers. The output layer of the
encoder contains r neurons, where r represents the dimensionality of the reduced manifold. The
propagator is composed of attention-based sequence-to-sequence RNN-LSTM layers that process the
reduced manifold data, advancing it along the time dimension. The decoder, designed as the reverse
of the encoder, reconstructs the data from the latent space back to the original physical dimension.
The model architecture and hyperparameters were adopted from the work of Deo et al. [6]. The
model is trained from scratch using TensorFlow [[I]] on a single NVIDIA P2200 Pascal GPU, with
training converging in 285 epochs within 20 minutes of wall-clock time. Figure 2] shows the visual
representation of AB-CRAN architecture.

2.3 Loss decomposition

Mean squared error (MSE) is commonly employed as the default loss function for regression tasks.
However, MSE fails to account for numerical dissipation and dispersion errors in the solution. To
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Figure 2: Illustration of attention-based convolutional recurrent autoencoder architecture.

address this limitation, MSE can be decomposed into two components: one representing dissipation
error (amplitude) and the other capturing dispersion error (phase). The total mean square error can be
rewritten as:

7 =02 (ug) + 02 (ug) — 2p0 (ua) o (uq) + (Ga — tg)>, A3)
where 1, is the ground-truth solution and u4 the predicted solution. o2 (u,) , o2 (ug) are the variances
of u, and ug, respectively. cov (uq, uq) is the covariance between u, and ug4 and p is the correlation
coefficient. Eq. [3|can be rewritten as

T = [0 (ua) — 0 (ua)]* + (G — a)” +2(1 = p)o (ua) o (ua) @)

We define the first two terms of the RHS of Eq. [d]as the dissipation error and the third term as the
dispersion error:

iss = [0 (ua) — 0 (ud)]2 + (tg — ﬁd)Q7
Toisp = 2(1 — p)o (ug) o (uq) - (5)

When two wave patterns differ solely in amplitude but share the same phase, their correlation
coefficient, p, should be 1, with Tpisp = 0 as indicated by equation @) . This outcome aligns with our
expectations and is a reasonable result. We employ this decomposition to formulate the loss function
as follows:
Ltunction = (1 - CY)L‘Decoder + CVﬁpropagator ,
_ (6)
£propagator = (1 -8 )TDISP + Broiss ,
where « and (3 are hyperparameters. To determine the values of « and 3, we utilize hyperparameter
tuning with the Ray Tune ASHA algorithm [[18]. Our experiments reveal that setting « and 3 greater
than 0.5 prioritizing the propagator, with a stronger emphasis on reducing dispersion error within the
propagator works best. This work presents the first introduction of phase and amplitude components
into the loss function for training deep neural networks for wave propagation.

2.4 Training

To improve the training of the attention-based convolutional recurrent autoencoder (AB-CRAN),
we integrate a denoising mechanism into the decoder’s loss function. During the initial forward
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Figure 3: Linear convection problem: Exact solution (left), AB-CRAN solution with n = 2 (center)
and error e = |4 — u| (right) for the testing parameter ;05 = 1.0125 in the space-time domain.

pass, noise is added to the input data before passing it through the encoder-decoder pipeline. The
decoder is then tasked with reconstructing the original noise-free data, optimizing the mean squared
error between the noisy inputs and the clean data, resulting in a denoising decoder loss. In the
second stage, the projected data from the encoder are processed through the propagator to generate a
time-evolved output, and the corresponding loss is decomposed into dissipation and dispersion errors,
as explained in the above section. The entire model is optimized using the AdamW optimizer
and a cosine annealing warm-restart scheduler [19]]. We also implemented an early stopping strategy
with a patience threshold of 50 epochs.

3 Results

We randomly selected a parameter from the test set for evaluation. The AB-CRAN architecture was
provided with data from the linear convection equation, using 1 = 1.0125 as input. Figure[3]illustrates
the exact solution alongside the AB-CRAN approximation for this test case. The results demonstrate
that the AB-CRAN model, trained with the proposed loss decomposition strategy, captures wave
dynamics with high fidelity, accurately preserving key features of the solution.

Our loss decomposition strategy significantly improves phase accuracy compared to the conventional
mean squared error (MSE) loss. As shown in Figure fa] predictions based on MSE exhibit noticeable
phase lag over time, highlighting the inability of traditional loss functions to maintain phase alignment.
In contrast, our method preserves phase throughout the prediction horizon. Furthermore, Figure ]
demonstrates that the proposed approach extends the prediction horizon by effectively mitigating
error accumulation. By separately addressing phase and amplitude errors, the model achieves greater
stability and accuracy, particularly for long-term forecasts.

This decomposition-based approach provides a robust and generalizable framework for long-term
forecasting of physical systems. By isolating and addressing phase and amplitude errors, it overcomes
limitations inherent in traditional MSE-based methods. The strategy reduces error accumulation,
ensuring phase alignment and amplitude stability over extended time horizons. These improvements
make the method broadly applicable to various physical forecasting tasks, such as wave propagation,
fluid dynamics, and climate modeling, establishing a new standard for accuracy and reliability in
long-horizon predictions.

4 Conclusion

In this work, we presented a novel loss decomposition strategy that addresses the limitations of
traditional mean squared error (MSE)-based loss functions for long-term predictions in physical
systems. By separating the loss into phase and amplitude components, our approach independently
tackles dispersion errors (phase misalignment) and dissipation errors (amplitude inaccuracies). This
targeted decomposition significantly enhances both the accuracy and stability of predictions, extending
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Figure 4: Accuracy assessment for wave prediction: (a) Comparison of MSE-based loss and Loss-
decomposition-based training prediction for t*= 0.036, 0.392 (b) Error vs. time-horizon plot com-
paring MSE-based and loss-decomposition-based training predictions, with a time-horizon of 10
time-steps

the prediction horizon while maintaining physical consistency. Our results demonstrate that the
proposed method outperforms standard MSE-based approaches, offering substantial improvements
for tasks such as wave propagation modeling.

The flexibility of this framework makes it broadly applicable to various forecasting tasks in physical
domains, including flow dynamics, ocean acoustics, and climate modeling. By addressing phase
and amplitude errors independently, our method ensures reliable long-term predictions for complex
systems. This study underscores the potential of tailored loss functions to advance the modeling and
simulation of complex dynamical systems, providing a promising foundation for future research in
data-driven physical modeling and scientific computing.
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