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Abstract

In this work we propose simple, effective and computationally efficient transfer
learning approaches for structure-property relation predictions in the context of
materials, with highly informative input from different modalities. As materi-
als properties stand from their electronic structure, representations are extracted
directly from datasets of electronic charge density profile images using Neural
Networks. We demonstrate transferability of the existing pre-trained Convolutional
Neural Networks and Large Language Models knowledge to physics domain data,
exploring a wide set of compositions for the regression of energetics- or structure-
related properties, and the role of semantic crystallographic information in the con-
text of multimodal approaches. We test the applicability of the CLIP multimodal
model, and employ as well a training protocol for building a more interpretable
and versatile stacked custom solution from different pre-trained modalities. The
study offers a promising avenue for enhancing the effectiveness of descriptor iden-
tification in physical systems, shedding light on the power of multimodal transfer
learning for materials property prediction. Instead of using the well-established
GNN-based approaches, we explore the transfer learning of image- and text-based
architectures, which can impact decision making for new low-cost AI methods in
the field of Materials and Chemoinformatics.
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1 Introduction

Machine Learning (ML) [1, 2] has initiated a remarkable transformation in Materials Science, with
the emergence of Materials Informatics (MI) playing a pivotal role in pushing the boundaries of
innovation in the context of multiple technological research challenges [3, 4, 5, 6, 7, 8, 9, 10,
11]. A key aspect is the identification of efficient descriptors, capable of capturing the essential
features of complex physical systems. In the realm of materials simulations, a wide variety of
descriptors have been proposed, both based on translationally and rotationally invariant functions
of atomic coordinates [12, 13, 14, 15, 16], or involving fixed-length feature vectors of atomic or
electronic properties [17, 18, 19], as well as more advanced feature extraction approaches through
Graph Convolutional Neural Networks (GCNNs) [20, 21, 22, 23, 24, 25, 26]. Wide open-source
databases [27, 28, 29, 30], originating from high-throughput [31, 32] ab-initio Density-Functional-
Theory (DFT) [33, 34] calculations, represent the data source for the development of such models
and MI in general.

In real-life research settings, it is very common to come across low-quantity but highly informative
data about the systems of interest: in the field of Molecular Science, an example can be found
in molecular orbitals, encoding reactivity and optical properties; in the field of Materials Science,
for example, phonon dispersion relations encode information on thermal conductivity. Recent
works have demonstrated the power of deploying Electron Charge Density (ECD) profiles in ML
for unsupervised studies of defects-related effects in metals [35], or prediction of density fields in
unseen samples via graph-based models [36]. The interest in such quantity lies in its encoding of
the necessary information regarding the properties of the system – in terms of constitutive atoms
and their interactions - regardless of dimensionality, stability or geometry. In this view, the ECD
profiles represent an example of highly informative data, which could be efficiently exploited for
structure-property relations also with the simplest available solutions.

In this work, we aim to propose to utilize the computational efficiency of multimodal transfer
learning solutions to predict materials properties from ECD profiles [37]. We build an image and text
dataset based on the Materials Project (MP) [28], which could stand as a representative example of a
relatively small-sized but very diverse problem to be learned. We successfully test the transferability
of the known multimodal Contrastive Language-Image Pre-training (CLIP) model from OpenAI [38].
Furthemore, we employ a protocol for building a custom, more interpretable and versatile stacked
multimodal solution starting from single pre-trained modalities. The proposed setting stands as an
impactful solution involving minimal information and computational effort which could lay the basis
for novel low-cost AI models for inverse materials design and databases in the field of Materials and
Cheminformatics.

2 Methods

2.1 Multimodal dataset

We build our multimodal dataset as a subset of the Materials Project [28], restricting it to stable
face-centered cubic (FCC) crystals. Their MP-IDs, the associated target properties and ECD fields are
collected, resulting in 781 samples. Data-cleaning is performed to filter out outliers in the distribution
of maxima and minima of the collected ECD fields, through definition of acceptance boundaries
with the interquartile range (IQR), resulting in 592 samples. As shown in Fig.(3) of the Appendix,
the majority of the collected samples is represented by ternary crystals, and their quantum-level
characterization is very demanding from a computational point of view. We use the dedicated Py-
Rho [39] to unify the grid dimensions to 60⇥60⇥60. To further simplify the problem without losing
the descriptive power of the data, we slice the three-dimensional data along specific bi-dimensional
plane, characterized by the highest atomic density. Having restricted ourselves to FCC crystals, such
plane corresponds to the h111i Miller indices. As shown in Fig.(1), we perform the slicing in a
supercell made by an 8 ⇥ 8 ⇥ 8 repetition of the unit-cell field data, and focus the extraction of a
squared image from such slice. Even though both total and differential ECDs are available, we restrict
the dataset on the latter type for the enhanced variability within and among samples originating from
the highlighting of interatomic interactions, rather than local atomic electron densities. A comparison
between the slices along the z-axis of the total and differential ECD fields is presented in Appendix in
Fig.(4). For regression experiments, we target energetics, with the formation (EF) and Fermi energies
(Efermi), as well as a structural property, the bulk modulus (Kvrh). Before application of the models,
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Figure 1: Visualization of the creation steps of the multimodal dataset. a) A bulk crystal is considered
together with its electron charge density field, its target properties and its structure file (.cif). b) The
differential electron charge density field is sliced along the maximum atomic density plane from an
8x8x8 repetition of the sample. c) A squared focus from the slice is extracted, and properly normalized.
d) The crystallographic textual information about the sample is produced. During experiments, we also
consider fractions of text as: ’Formula’ (only the composition name), ’Keywords’ (the composition
name and the bond lengths information), and ’All’ (the entire text).

the target properties undergo standardization, and the ECD isoline values a z-score normalization and
rescaling in the [�1; 1] range: this allows to preserve peculiar patterns of zero-level oscillations across
electron accumulation and depletion isolines. Finally, with the help of the Robocrystallographer [40],
a tool capable of generating concise text descriptions of crystalline structures by analyzing their
symmetry, local environment, and extended connectivity from their Pymatgen structures, we build a
set of text attributes associated to each MP-ID, an example of which is reported in Fig. (1).

2.2 Multimodal models

We use two foundational models to incorporate the textual and image information about the crystal
structures, resulting in a stacked custom multimodal model. The schematic representation of the
architecture is reported in Appendix in Fig.(5) To process the images, we use InceptionV3, a model
pre-trained on ImageNet. For text, we use Roberta, trained on language modeling task. We use
the same procedure to adapt either of the models. First, we remove model’s classification head and
replace it with a readout network composed of 4 dense layers, whose width gradually decreases from
pre-trained model’s latent dimension to 1 output channel. We first fit the new dense readout, to then
unfreeze the rest of the model. After training the image- and text-based property regressors, we load
them both to create a multimodal model. We remove the final layer of both readout dense networks.
We concatenate the outputs of penultimate layers of our models, each having 256 channels, and
create two new readout layers. Once again, we first fit the newly created layers to then unfreeze the
remainder of the model. All dense readout layers, apart from the ultimate single-channel layer, are
followed by ReLU activation, BatchNorm and dropout. To contrast this approach, we also conduct
experiments with CLIP, a transformer-based model pre-trained on a text-image multimodal task. We
add a single linear layer on top of the pre-trained model to get the regression output.

3 Experiments

First, we verify the transferability of the CLIP multimodal model to our physics domain problem.
To do so, we use 85% of the dataset for cross-validation experiments with five folds, and keep the
remaining 15% for further testing. Preliminary experiments have been conducted to optimize the
hyperparameters of the model, and are reported in the Appendix Table(2). In Table(1), we report
the performances of the CLIP model averaged over various trials. The higher and more stable
performances are found for the regression of the bulk modulus, but overall we observe promising
generalization capabilities in terms of R2, on average around 0.8. We report examples of learning
curves over different folds in the Appendix Fig.(6). Additional experiments have been conducted by
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Table 1: Statistical results for regression of the target properties with the CLIP multimodal model
showing the mean R2 across validation folds, as well as the test set R2 for each run, along with the
average values. CLIP used the full textual description available (’All’).

EF Efermi Kvrh

R2/RMSE[eV/atom] R2/RMSE[eV] R2/RMSE[GPa]

#1 Val. Folds Average 0.91/0.21 0.90/0.89 0.91/21.9
Test 0.72/0.36 0.87/0.90 0.88/24.4

#2 Val. Folds Average 0.88/0.23 0.90/0.88 0.88/24.1
Test 0.89/0.24 0.82/1.25 0.80/35.3

#3 Val. Folds Average 0.77/0.35 0.90/0.86 0.92/21.1
Test 0.67/0.35 0.51/2.07 0.80/36.5

h#i Val. Folds Average 0.85/0.26 0.9/0.86 0.90/22.4
Test set 0.76/0.31 0.73/1.41 0.83/32.1

taking the Fourier Transform of ECD images to test the importance of periodicity. The Appendix
Fig(9) and Table(3) respectively report examples of such data and the related performances of the
model, which however did not underline specific improvements.

Fig.(2) reports the regression performance of the stacked custom multimodal model during the
different stages of its implementation. Already at the stage of InceptionV3 (image-only) finetuning,
the bulk modulus prediction reaches high R2 values in generalization, comparable to the CLIP model,
and the subsequent finetuning of the RoBERTa (text-only) model or the composition of the semantic
and visual embeddings from the finetuned models do not seem to provide visibile improvements. The
prediction of the Fermi energy based on ECD images only, instead, does not generalize well, and
remarkably benefits from the use of textual crystallographic information at all its levels (Formula,
Keywords and All). The formation energy is a challenging prediction target, though it shows slight
improvement as text input is added.

4 Discussion, Limitations and Future Work

In this work we propose computationally efficient approaches to property prediction in materials
through the use of multiple modalities in transfer learning, with ECDs as highly informative input
data. In particular, we show the dual approach of a ready-to-use pre-trained multimodal model like
CLIP and the creation of a custom stack of single-modality pre-trained models. Even though the
performances of the two approaches are similar, the latter stands as i) a more interpretable solution,
because the single-modality stages convey the importance of each model and data type in the final
combined performance; ii) more versatile solution, in it being composed of arbitrary single-modality
models, which might be chosen appropriately for the planned application. We underline the highly
informative nature of the data: the image of a single slice out of a three-dimensional field could
be enough to build expressive features for the prediction of computationally expensive material
properties properties like the bulk modulus, which generally requires calculating the total energy of
the system under different volumes and then fitting to an equation of state. Furthermore, we observe
remarkable regression improvements through inclusion of semantic embeddings, as opposed to only
using visual information. It is an encouraging sign of the possibilities that multimodal approaches
offer in such context.

The work presents some limitations and potential for future work. As we run independent trials for
different variants of textual descriptions, we notice that multiple instances of image-only finetuning
show palpable variance in performance, even though they are not influenced by varying text input
(Fig. (2, Image-FT). This points at the need for multi-run experiments to quantify the variance
in performance. An exciting avenue already under consideration could be the implementation of
multimodal feature estimation in an inverse design procedure, which will be able to employ ECD
fields and basic crystallographic information in a search for desired set of properties. Such approach
would represent a remarkable leap in the field, connecting low-cost approaches, generative models
and ECD prediction.

4



Figure 2: Regression performance of the different stages of a custom stacked multimodal model
towards the three target properties: the formation energy, EF , the Fermi energy, Efermi, and the bulk
modulus, Kvrh. The ’Image’ only stage represents the fine-tuning (FT) of the InceptionV3 model.
The ’Text’ only stage represents the fine-tuning of the RoBERTa-Base model. The ’Image+Text’
stage represents the fine-tuning of the embedding concatenation from the two modalities. Each of the
stages involving text, also report the extent of textual information used, being it only the ’Formula’,
the ’Keywords’ (composition name and bond lenghts information) or ’All’ available text.
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