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Abstract

To analyse how diffusion models learn correlations beyond Gaussian ones, we study
the behaviour of higher-order cumulants under both the forward and backward
process. We present explicit expressions for the moment- and cumulant-generating
functionals, in terms of the distribution of the initial data and properties of the
forward process. We show analytically that higher-order cumulants are conserved
under pure diffusion, i.e., in models without drift, during the forward process, and
that therefore the endpoint of the forward process maintains non-trivial correlations.
We demonstrate that since these correlations are encoded in the score function,
higher-order cumulants are learnt quickly in the backward process, also when
starting from a normal prior. We confirm our analytical results in an exactly
solvable toy model and in scalar lattice field theory.

1 Introduction

Diffusion models (DMs) [1] are a widely used class of deep generative models, able to generate
high-quality images and videos via a stochastic denoising process (see e.g. Stable Diffusion [2] and
DALL-E 2 [3]). In DMs, images are scrambled during the forward process, by applying random
noise drawn from a normal distribution to each pixel. It is often stated that at the end of the forward
process the images are close to being fully random, that is, without any correlations remaining [4, 5].
During the forward process, the change in the logarithm of the distribution function is learned (“score
matching”) [6]. In the backward process, this score is applied to initial conditions drawn from a
normal distribution and new images are generated (“denoising”) [7].

To understand how correlations beyond Gaussian ones evolve during both the forward and backward
process, we use lattice field theory (LFT) as a robust and well-understood framework to address
this question. Indeed, in field theory, interactions between fundamental fields are encoded in higher
n-point correlation functions and there is a long history [8] of studying strongly interacting quantum
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field theories numerically by combining the path integral formulation with Monte Carlo methods,
after discretisation on a spacetime lattice [9, 10].

Besides using field theory as a framework to analyse the dynamics of DMs, machine learning (ML)
methods also offer a new avenue for generating LFT configurations, with field configurations playing
the role of images, potentially avoiding issues related to critical slowing down (see e.g., Refs. [11,12]).
The first applications of DMs to LFT can be found in Refs. [13, 14]. To apply DMs to LFT, it is of
paramount importance to understand whether higher-order correlations are faithfully reproduced. In
this contribution we study the dynamics of cumulants to address both questions. More details of the
work presented here can be found in Ref. [15].

Related work Applications of field theory to understand ML models can be found in e.g. Refs. [16–
18]. The application of generative ML methods to LFT is reviewed in Ref. [19]. Flow-based methods
were developed in Refs. [20, 21] and subsequent work. Diffusion models were first applied to LFT
in Refs. [13, 22], in which the connection with stochastic quantisation [23–25] was pointed out. A
formulation using Feynman’s path integral was given in Ref. [26]. See Ref. [15] for more references.

2 Diffusion models, moments and cumulants

We consider a real scalar field ϕ(x), with the target probability distribution

P0[ϕ] =
1

Z
e−S[ϕ], Z =

∫
Dϕe−S[ϕ], (1)

where S[ϕ] is the Euclidean action. The integral is over all field configurations and Dϕ denotes the
path integral measure. Below we assume that the first moment vanishes, or has been subtracted,
ϕ(x) → ϕ(x)−EP0

[ϕ(x)]. This distribution is used to generate initial configurations for the forward
process, given by

∂tϕ(x, t) = K[ϕ(x, t), t] + g(t)η(x, t). (2)
Here we use the DM formulation in terms of stochastic differential equations (SDEs) [4], with
0 ≤ t ≤ T , K[ϕ, t] a possible drift term, g(t) the strength of the noise, and η ∼ N (0, 1). Below we
consider both score-based, variance-expanding schemes [7, 27], in which K[ϕ, t] = 0, and denoising
diffusion probabilistic models (DDPMs) [28, 29], in which K[ϕ, t] = − 1

2g
2(t)ϕ(x, t). We take

g(t) = σt/T , with σ a tunable but generically large parameter.

The corresponding backward process reads

∂τϕ(x, τ) = −K[ϕ(x, τ), T − τ ] + g2(T − τ)∇ϕ logP (ϕ, T − τ) + g(T − τ)η(x, τ), (3)

where τ = T − t. Initial conditions for the backward process are drawn from a normal distribution
with a variance comparable to the final variance of the forward process. The second term in Eq. (3) is
the “score”, the change in the logarithm of the distribution, which is determined during the forward
process, via score matching [6].

With a linear drift, K[ϕ(x, t), t] = − 1
2k(t)ϕ(x, t), it is straightforward to solve Eq. (2) analytically,

as

ϕ(x, t) = ϕ0(x)f(t, 0) +

∫ t

0

ds f(t, s)g(s)η(x, s), f(t, s) = e−
1
2

∫ t
s
ds′ k(s′), (4)

where the initial condition ϕ0 ∼ P0[ϕ0]. Note that for pure diffusion, with k(t) = 0, f(t, s) = 1.

We consider moments, involving powers of the field at coinciding spacetime points,

µn(x, t) = E[ϕn(x, t)]. (5)

Cumulants κn(x, t) are obtained via the relation [30]

κn = µn −
n−2∑
m=2

(
n− 1

m− 1

)
κmµn−m, (6)

with µ1 = κ1 = 0. When the target theory is translationally invariant, moments and cumulants are
independent of x and we drop the x-label. The time-dependent second moment (or second cumulant)
then reads

µ2(t) = κ2(t) ≡ E[ϕ2(x, t)] = EP0
[ϕ2

0(x)]f
2(t, 0) + Ξ(t) = µ2(0)f

2(t, 0) + Ξ(t), (7)
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where µ2(0) is the second moment of the target distribution and

Ξ(t) =

∫ t

0

ds f2(t, s)g2(s). (8)

The fourth moment and cumulant are given by, after some algebra,
µ4(t) = µ4(0)f

4(t, 0) + 6µ2(0)f
2(t, 0)Ξ(t) + 3Ξ2(t), (9)

κ4(t) = µ4(t)− 3µ2
2(t) =

[
µ4(0)− 3µ2

2(0)
]
f4(t, 0) = κ4(0)f

4(t, 0), (10)
i.e. the fourth cumulant is equal to the fourth cumulant of the target theory times a time-dependent
function, which is 1 for pure diffusion. This structure turns out to be the same for all higher-order
cumulants, which can be shown using generating functionals [15]. Moments are generated by

Z[J ] = E[eJ(x,t)ϕ(x,t)] = e
1
2J

2(x,t)Ξ(t)

∫
Dϕ0 P0[ϕ0]e

J(x,t)ϕ0(x)f(t,0), (11)

and the cumulant-generating functional reads

W [J ] = logZ[J ] =
1

2
J2(x, t)Ξ(t) + log

∫
Dϕ0 P0[ϕ0]e

J(x,t)ϕ0(x)f(t,0). (12)

The higher-order cumulants are then given by

κn>2(t) =
δnW [J ]

δJ(x, t)n

∣∣∣
J=0

=
δn

δJ(x, t)n
logEP0 [e

J(x,t)ϕ0(x)f(t,0)]
∣∣∣
J=0

, (13)

and hence equal to the cumulants in the target theory, multiplied with the time-dependent function
fn(t, 0). In particular, for pure diffusion we find κn>2(t) = κn(0). We conclude that in that case
the final distribution of the forward process is not a simple normal distribution, but is as correlated
as the target distribution. These higher-order cumulants are encoded in the score and should be
reconstructed during the backward process, which we explore now.

3 Applications

In this section we verify our analytical results in two cases, an exactly solvable toy model with one
degree of freedom and a self-interacting scalar field theory in two dimensions. In the toy model we
train a DM using a time-conditioned fully connected neural network and in the scalar field theory we
use a U-Net architecture. More details on the implementation can be found in Refs. [13, 15].

3.1 Exactly solvable toy model

We first consider as target distribution a linear combination of two normal distributions for one degree
of freedom,

P0(x) =
1

2

[
N (x;µ, σ2

0) +N (x;−µ, σ2
0)
]
. (14)

All odd moments and cumulants vanish. All even moments and cumulants can be computed exactly
and are nonzero. We have solved this model numerically, using a DM in both a variance-expanding
and a variance-preserving (DDPM) scheme, with g(t) = σt/T , and σ = 10 and T = 1.

We show the evolution of the 4th, 6th and 8th cumulants for the variance-expanding scheme in Fig. 1
and for the DDPM in Fig. 2, during the forward (top row) and the backward (bottom row) processes,
for the parameter choice µ0 = 1, σ0 = 1/4. The cumulants behave as predicted analytically. In
the variance-expanding case, they are approximately constant, except towards the end (start) of
the forward (backward) process. This is due to the need for precise cancellations, which requires
sufficient statistics. For the forward process, this is demonstrated by including expectation values
with 105, 106 and 107 trajectories. The apparent numerical instability is reduced as the number
of trajectories increases. This supports the analytical result that the higher-order cumulants are
preserved. In the backward process we observe the reverse behaviour, with only a partial cancellation
initially. After some time, the cumulants become approximately constant and equal to the target
value, see Table 1. In the DDPM case, the higher-order cumulants evolve from the target value to
zero, and vice versa, in a much more controlled manner than in the variance-expanding scheme;
the cancellations required above are not needed here. We also show the result obtained using the
analytically determined score [15]. A comparison between the DM results and the expected ones is
given in Table 1. Overall we conclude that the higher-order cumulants are learned correctly, with the
variance-expanding scheme slightly outperforming the DDPM.
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Figure 1: Evolution of the normalised 4th, 6th and 8th cumulants, presented as κn/κ
exact
n − 1, in the

two-peak model with µ0 = 1 and σ0 = 1/4, in the variance-expanding scheme, during the forward
process, using 105, 106 and 107 trajectories (above), and during the backward process, with the score
determined by the diffusion model, using 106 trajectories (below).
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Figure 2: As above, using the DDPM, presented as κn/κ
exact
n , with 106 trajectories. In the backward

process, both the score determined by the diffusion model and the analytical score are used.

3.2 Self-interacting scalar field

We now extend the analysis to a scalar field ϕ(x), defined on a two-dimensional lattice, with a λϕ4

interaction. We follow the notation of Ref. [13]. The results shown below are obtained on a 32× 32
lattice, with hopping parameter κ = 0.4 (not to be confused with a cumulant) and coupling λ = 0.022.
We used 105 configurations to train the model using the variance-expanding scheme with σ = 25,
and also 105 configurations to evolve the cumulants during the forward and backward processes.

Fig. 3 shows the 2nd, 4th and 6th cumulant, normalised with the numerically computed target value,
during the forward (left) and backward (right) process. As expected, the 2nd moment or cumulant
increases as σ2t/T (decreases as σ2(T−τ)/T ). The 4th and and 6th cumulants are approximately
constant, with again finite-statistics effects towards the end (start) of the forward (backward) process,
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Figure 3: Evolution of the normalised 2nd and 4th (above) and 6th (below) cumulant, presented as
κn/κ

target
n − 1, in the two-dimensional ϕ4 theory, during the forward (left) and backward (right)

process in the variance-expanding scheme.

as above. Importantly, the cumulants are reproduced at the end of the backward process, as shown in
the insets and in Table 1.

Two-peak model κ2 κ4 κ6 κ8

Exact 1.0625 −2 16 −272
Data 1.0624(5) −2.000(2) 16.00(2) −272.0(6)
Variance expanding 1.0692(6) −2.001(2) 16.03(3) −272.7(6)
Variance preserving (DDPM) 1.0609(5) −1.976(2) 15.72(2) −265.6(6)

Scalar field theory κ2 κ4 κ6 κ8

HMC (normalised) 0.39597(4) −0.29453(6) 0.90108(28) −5.8689(25)
Variance expanding 0.39598(4) −0.29454(7) 0.90113(32) −5.8694(28)

Table 1: First four nonvanishing cumulants κn in the two-peak model, as obtained from training data
and from diffusion models using 106 configurations, and in the scalar ϕ4 field theory, with κ = 0.4, λ
= 0.022 and 105 configurations on a 322 lattice, using normalised HMC data and as obtained from
the diffusion model. Statistical errors are computed by bootstrapping in both cases.

4 Summary

Employing and motivated by lattice field theory, we have studied the evolution of higher-order
cumulants during the forward and backward process in diffusion models, using both variance-
expanding and preserving schemes. We have shown analytically that cumulants κn, with n > 2,
are preserved in the case of pure diffusion, i.e. in the absence of a drift term. Hence the final
configurations of the forward process remain highly correlated. These correlations are learned during
the backward process, as they are encoded in the score. Our analytical findings are supported by
numerical evidence in an exactly solvable toy model and in the case of a self-interacting scalar field
defined on a two-dimensional lattice.
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