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Abstract

Hadron production is involved in all high-energy physics experiments and is a
key element to understanding the formation of the visible matter in the universe.
Fragmentation functions (FFs) are required to quantitatively describe hadron pro-
duction; the key limitation is that they can not be calculated in theory and have to
be extracted from experimental data. FFs are traditionally determined by fitting
experimental observables with pre-assumed functional forms. This study is the
first to infer, directly from data, a functional form of fragmentation functions using
a machine learning technique, namely symbolic regression. The learned function
significantly describes data, resembles the Lund string FF, and is generalizable;
thus, it could be a potential candidate for use in global fits of FFs.

1 Introduction

The traditional approach in physical sciences relies upon the complementarity between theory and
experiments, meaning that theoretical predictions shall be validated by experimental observations and
vice versa. Physical sciences aim to understand the universe at different scales, ranging from celestial
objects and galaxies (i.e., astronomy and cosmology) to elementary particles (e.g., quarks in particle
physics). High-energy physics (HEP) investigates the universe at the lowest length scale. It focuses on
studying different aspects of the strong nuclear interaction by colliding different types of elementary
and composite particles, as well as nuclei, such as lepton-proton, proton-proton, and nucleus-nucleus.
In such collisions, hadrons (e.g., particles composed of three quarks and their antimatter counterparts,
antiquarks) are produced in the final state and thus used to measure various physical observables,
such as particle distributions, differential cross sections, etc. Measured physical observables are then
compared to theoretical calculations to either confirm or reject a given assumption or theory. For an
exemplary process, say electron-proton (ep) scattering, the interaction consists of two parts. First is
the interaction between elementary particles, i.e., the incoming electron emits a photon, W or Z boson
that interacts with one quark (q) inside the proton, subsequently followed by the hadronization of the
scattered quark into final-state hadrons. Analogously, the cross section of electron-proton scattering
can be written as:

dσep→hX ∝ dσeq→e′q ×Dh
q (1)

where dσeq→e′q is the elementary cross section, i.e., describes the interaction between elementary
particles (e, q), Dh

q are the so-called fragmentation functions (FFs) that quantitatively describe the
transition from quarks to final-state hadrons (h). Whereas the elementary cross section can be
calculated in Quantum Electrodynamics (QED) theory, FFs can not, and their determination fully
counts on experimental measurements. The current methodology relies on global FF fits [1, 2], where
a pre-assumed functional form of FFs is fit to a wide range of observables (e.g., differential cross
sections and multiplicities) measured in various high-energy physics processes (ep, pp, etc.), to learn
its parameters by involving the so-called DGLAP evolution equations [3] to take into account the
different energy scales of the experimental measurements (e.g.,

√
s ≈ 109 − 1012 electron volts).
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In the fast-evolving era of AI, a basic question would be whether a functional form of FFs could be
learned directly from data using machine learning (ML) instead of assuming a function and, most
importantly, if the learned function could be interpretable and human-understandable to consider it
in global FF fits. This is fortunately possible with symbolic regression (SR) [4–6]. The latter has
shown remarkable potential in learning succinct mathematical equations directly from data and is
proving to be a potential candidate for an automated scientific discovery tool. SR is particularly
suited for physics applications since physical phenomena are described by mathematical equations.
Its application to experimental data, however, is very limited [7, 8], in particular in high-energy
physics [9], and was generally deployed on synthetic datasets in the majority of SR methods and
applications.

Fragmentation functions represent an interesting and challenging application of ML simply because
they can not be calculated in theory, and are essential to describe hadron production in all HEP
processes.This study aims to infer a functional form of FFs from experimental (naturally noisy)
data, without explicit assumptions like in the traditional approach, and compare it with established
ones. From a physics perspective, it is very intriguing to check what data reveals about FFs. From a
technical perspective, this study could be regarded as a test of the credibility of SR as a scientific
discovery tool in noisy data environments, such as in physical sciences and more generally natural
sciences. FFs represent, from a phenomenological point of view, the probability of a particular parton
q to transform into a charged hadron h carrying a fractional energy z. In global FF fits [1, 2], an FF
is parameterized by Dh

q ∝ zα(1− z)β , where α and β are fit parameters. The component (1− z)β

constraints the FFs at z = 1 such that Dh
q (z = 1) = 0. This functional form is inspired by the Lund

symmetric fragmentation function from the “Lund string model” [10] of hadronization and is given
by:

f(z) ∝ (1/z)(1− z)α exp(−βm2
h/z) (2)

Where α and β are parameters that should be tuned to reproduce data, and mh is a mass term. It
is worth noting that this study does not replace or eliminate the need for global FF fits; it rather
complements them by suggesting a functional form of FFs that originates from experimental data.

2 Datasets and Methods

The dataset comprises differential multiplicities of charged hadrons [11, 12] of different species
measured in semi-inclusive deep inelastic scattering at the COMPASS experiment [13] at CERN.
They are measured as a function of z, the hadron’s fractional energy, in bins of the kinematic variables
x, the Bjorken scaling variable, and y, the virtual photon transfer momentum. This dataset plays an
instrumental role in constraining FFs in the global fits [14] thanks to its richness, where multiplicities
are presented in a very detailed binning in the relevant kinematic variables. From a technical point of
view, it encompasses multiple subsets that reveal a consistent fundamental structure while spanning
diverse regions in the phase space. This mirrors multiple instances of SR to the same physics problem
but with distinct data points. In addition, the effectiveness of the results can be easily verified for
generalization within the same dataset and extended to other datasets, given the universality of FFs.

Symbolic regression aims to simultaneously learn both models’ structure and parameters directly from
data,in contrast to traditional deep learning methods where only models’ parameters are optimized.
A powerful representation of an equation is the unary-binary tree [15] of mathematical symbols,
which in turn allows one to express any equation as a sequence of symbols by traversing its tree,
referred to as the Polish notation [16]. The latter is a mathematical notation in which operators
precede their operands, e.g., Fe = kq1q2/r

2 ≡ {/, ∗, k, ∗, q1, q2,pow, r, 2}. The optimization
problem in SR is defined over a discrete space of mathematical expressions, composed from a
user-defined set of allowable mathematical operators, commonly referred to as a “library”, e.g.,
L = {add, sub, mul, etc.}, and, in general, it has been shown to be an “NP-hard" problem [17].

SR methods have significantly evolved from traditional search-based approaches (e.g., heuristic search
and evolutionary algorithms) to modern learning-based (e.g., transformer-based language models) and
hybrid techniques, as reviewed in [4]. We specifically choose the NeSymReS [18] method based on
an encoder-decoder transformer architecture [19]. Transformers were originally developed in natural
language processing (NLP) to learn the context in text data by introducing the so-called attention
blocks into a standard NN’s architecture. The outstanding performance of transformers has quickly
expanded their use beyond NLP to general sequential data, including time-series data. The choice of
a transformer-based SR method is mainly driven by the fact that learning the context in data holds
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Figure 1: "(Data-SR)/SR" comparison for h± as a function of z. Data is experimental Mh(z) [11],
and SR denotes predicted Mh(z) using models learned by SR in individual kinematic bins. Columns
represent the five y bins, and rows represent the nine x bins as indicated on the right-hand side.

significant meaning in physics, particularly in light of the causal nature of physical phenomena, where
capturing correlations among variables is crucial. We use the NeSymReS model that is pre-trained on
100 million equations. In the pre-training phase [18], equation skeletons (with numerical constant
replaced by placeholders) and the inputs are generated from a sampling distribution Pe,X , where
e ≡ fe : Rdx → Rdy and X ≡ {xi}ni=1, such that a training input is (X, y, e). The encoder maps
a data set (X, y) into a latent vector z which then passes through the decoder. The latter creates a
sequence of symbols in an auto-regressive manner, i.e., each generated symbol is appended to the
input such that the next symbol is generated based on the new context. The model is trained to
reduce the average loss between the predicted skeleton and the original one. At the end, the predicted
skeleton equation is converted into a “proper” equation by replacing the constant tokens (“◦”) with
their numeric counterparts using non-linear optimization.

3 Results and Discussion

We perform the SR analysis using differential multiplicities of positively (h+) and negatively (h−)
charged hadrons. Each dataset comprises distributions of points as a function of z, i.e. Mh(z),
in nine x bins and up to five y bins within each x-bin. Figure 1 illustrates the performance of the
models learned by SR in terms of a “(data-model)/model” comparison as a function of z in individual
(x, y) bins for h+ and h−. In each kinematic bin, a model is independently inferred from the set
of experimental data points using SR. Different equations are repetitively learned across the y bins.
The top performing functions that remarkably describe the z dependence of Mh±

and quantitatively
match the data are learned in the third y bin, i.e., 0.2 < y < 0.3, with loss values of 10−5 and up
to 10−3, except for the last x bin where a = 1. These functions are f1(z) = a exp(−bz)/z2 and
f2(z) = a exp(−bz)/(z − c). The bins where the ratio is partially shown or fully missing refer to
cases for which normalization factors are missing in the inferred models, i.e., a = 1.

The function f2(z) outperforms f1(z) in describing the z dependence of h± multiplicities, particularly
at high z (z > 0.5). The best description of the data is obtained for h− in the range 0.02 < x < 0.03,
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Figure 2: Comparison of the data fits using the functions listed in Eq. 3 for positive hadron multi-
plicities [11]. χ2

i denotes the χ2/ndf values obtained using gi(z). The box delimits the first and the
third quartiles, whereas the middle line represents the median. The bottom and top lines represent,
respectively, the minimum and maximum values in the χ2/ndf values. Markers show the outliers
(values significantly smaller or larger than median values).

with a loss of 5.8× 10−5, and parameters a ≈ −9.8, b = −7.7, and c ≈ 1. This result is equivalent
to the equation f(z;x3, y3) = a(1 − z)−1 exp(−bz), which we will refer to as f3(z). The latter
significantly resembles the Lund FF (Eq. 2) in the exponential component and the term (1 − z)α
with α = −1. The multiplicities in the corresponding bin, i.e., 0.2 < y < 0.3 and 0.02 < x < 0.03,
represent the “training” data in the context of this study, where a pre-trained transformer network is
used. The multiplicities in the remaining bins of the phase space can be considered “test” data. They
allow us to evaluate the overall performance of the models learned during training on “unseen” data,
i.e., data points that were not part of the “training” set, and to check the generalizability of the model
across the whole phase space (i.e., other (x, y) bins), and to other related measurements (e.g., π± and
K± multiplicities, measurements at different energy, various processes, etc.).

The traditional ML approach achieves this goal by using f3(z) ≡ f(z;x3, y3) with the same
numerical values of the constants a and b to produce predictions on test data. For physics data,
however, numerical constants in the models are expected to be physical constants, which do not
necessarily have the same values across the whole phase space and may exhibit weak or strong
dependence upon the kinematic variables. In fact, an important aspect of such multi-dimensional
experimental measurements in physics is to investigate the dependence of physical constants upon
the kinematic variables of interest in the measurement. Therefore, to evaluate the performance of the
learned models on test data, we performed fits of Mh(z) in individual kinematic bins. We consider the
most frequently learned functional forms (g1 ≡ f1, g2 ≡ f2) and the top-learned function (g3 ≡ f3)
associated with the lowest error. In addition, we consider a general form of f3 by taking the power
exponent in the term (1− z) as a free fit parameter, which we refer to to as g4. This choice is mainly
driven by the existence of a power “2” exponent in the learned function f1. Thus, merging f1 and f3
into a general form requires the freeing of the exponent parameter. The list of fit functions includes:

g1(z) = a exp(−bz)/z2 g3(z) = a exp(−bz)/(1− z)

g2(z) = a exp(−bz)/(c− z) g4(z) = a(1− z)c exp(−bz)
(3)

The best fits of h± multiplicities are obtained using g2(z) and g4(z), both having an extra parameter
c and an overall better description across the phase space obtained using g4(z). This is illustrated in
Fig. 2, where a comparison of the range of χ2/ndf values obtained using different fit functions (Eq. 3)
is shown for h+. Figure 3 (left) illustrates the quality of the fits using g4 in terms of the distribution
of the relative errors of the predictions, (ytrue − ypred)/ypred, where y denotes the multiplicity (Mh),
“true” denotes experimental data, and “pred” denotes predictions produced using g4(z; {a, b, c}fit) in
individual bins, for h± test data. Each dataset consists of about 280 data points. The quality of the
fits reflects a remarkable description of the data and is comparable between positively and negatively
charged hadrons. In addition, the fits describe remarkably well the z dependence of the multiplicities
in all kinematic bins for h+ and h−. No systematic effect is observed in the z dependence of the
relative errors in individual kinematic bins, as illustrated in Fig. 3 (right) for h±, in contrast to global
fits where this ratio shows a systematic slope in the z dependence at high z particularly in the range
0.2 < y < 0.5. Figure 4 compares the z dependence of experimental data and predictions obtained
using g4 for h+ in two exemplary x bins and five y bins within each. The fits significantly describe
Mh(z) in terms of numerical values and slope, and this observation is common across all (x, y) bins.
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Figure 3: Left: distribution of relative errors of the fitted functions on the test set for h±. Right: “true”
vs. “prediction” scatter plot for positively (black) and negatively (red) charged hadrons.

0.2 0.4 0.6 0.8
z

0

1

2

3

dM
h+

dz
+

0.04 < x < 0.060.04 < x < 0.060.04 < x < 0.060.04 < x < 0.060.04 < x < 0.06

0.1 < y < 0.15
0.15 < y < 0.2
0.2 < y < 0.3
0.3 < y < 0.5
0.5 < y < 0.7

0.2 0.4 0.6 0.8
z

0

1

2

3

dM
h+

dz
+

0.06 < x < 0.10.06 < x < 0.10.06 < x < 0.10.06 < x < 0.10.06 < x < 0.1

0.1 < y < 0.15
0.15 < y < 0.2
0.2 < y < 0.3
0.3 < y < 0.5
0.5 < y < 0.7

Figure 4: Comparison between experimental data (markers) and fits (curves) for positive hadron
multiplicities [11], displayed as a function of z in five y bins (staggered vertically by α = 0.3 for
clarity) in two exemplary x bins, i.e., x ∈ [0.04, 0.06] and x ∈ [0.06, 0.1]. Fits are performed in
individual kinematic bins using the generalized SR model g4(z) (cf., Eq. 3). Statistical uncertainties
are considered in the individual fits. The fits significantly agree with data.

To test the credibitily of the generalized learned model g4 across all hadron species, we fit π± and
K± multiplicities in individual (x, y) bins. The same observations made for h are made for identified
hadrons, i.e., the fits describe remarkably well the z dependence of the multiplicities in all kinematic
bins for both π± and K±. The quality of the data fits is better for h and π (σN ≈ 5%) compared to
K (σN ≈ 7− 13%). This observation is understandable given that the unidentified hadron sample
includes all hadron species, i.e., h = {π,K, p} where p denotes protons, whereas pions represent
around 70% and kaons only 20% of the total hadron sample.

4 Conclusion

Fragmentation functions are determined by global FF fits using pre-defined functional forms. This
study is the first to infer a functional form of FFs directly from data using symbolic regression. The
function inferred from the considered data set [11] is:

fSR(z) = a(1− z)c exp(−bz) (4)
fSR(z) resembles the Lund symmetric fragmentation function (Eq. 2) but distinct. The learned
function is fit to data and found to describe them very well for all hadron species and across the
whole phase space covered in the measurement. The learned function could be considered a potential
candidate for an FF’s parameterization in global FF fits. This would be a departure from traditional
methodology, wherein both the model and its parameters originate from data. It is worthy of note
here that, despite the fact that the SR approach, while powerful, may be more complex to implement
compared to traditional fitting methods, SR does not replace fitting methods. The ultimate goal of
the application of SR is to enable the discovery, in a purely data-driven manner, of formulae that
can be further tested using traditional statistical techniques such as fitting data. Finally, this result
positions symbolic regression as a promising tool for automated scientific discovery in noisy data
environments and thus represents a novel approach to follow in QCD phenomenology studies.
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