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Abstract

Neural networks that synergistically integrate data and physical laws offer great
promise in modeling dynamical systems. However, iterative gradient-based op-
timization of network parameters is often computationally expensive and suffers
from slow convergence. In this work, we present a backpropagation-free algo-
rithm to accelerate the training of neural networks for approximating Hamiltonian
systems through data-agnostic and data-driven algorithms. We empirically show
that data-driven sampling of the network parameters outperforms data-agnostic
sampling or the traditional gradient-based iterative optimization of the network
parameters when approximating functions with steep gradients or wide input do-
mains. We demonstrate that our approach is more than 100 times faster with CPUs
than the traditionally trained Hamiltonian Neural Networks using gradient-based
iterative optimization and is more than four orders of magnitude accurate in chaotic
examples, including the Hénon-Heiles system.

H(q, p) = p2/2 + (1− cos(q))

D = {qi, pi, q̇i, ṗi}Ki=1

1. Data: Hamiltonian system
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2. Initial approximation (U-SWIM)
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Figure 1: Approximate-SWIM (A-SWIM) algorithm: This figure illustrates the process of approx-
imating a Hamiltonian system from data, including generalized “position” q and “momentum” p
coordinates, along with their time derivatives q̇ and ṗ. Left: The given Hamiltonian system. Center:
Sampling hidden layer weights and biases {Wl, bl}Ll=1 in the unsupervised setting. Right: Resam-
pling hidden layer parameters using the approximated function values Ĥ(q, p) obtained in stage two.
Note that in steps two and three, the linear layer parameters {WL+1, bL+1} are optimized by solving
a linear least-squares problem.
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1 Introduction

Learning techniques often integrate a series of inductive biases to learn inherent patterns within data
and extend the generalization capability beyond the training set. In the context of approximating
physical systems, physical priors are crucial for capturing the system’s nature, including its dynamics
and underlying physical laws [32, 7, 3]. In particular, Hamiltonian Neural Networks (HNNs)
leverage Hamilton’s equations [14, 15] and re-formulation of the loss functions to learn the conserved
quantities of target systems [12, 1]. Subsequent research has introduced various extensions to HNNs,
such as port-HNNs [8] for controlling forces and dissipative HNNs [30] for modeling dissipative
systems. Recent work has further extended HNNs by integrating symplectic methods [9, 25, 24].
Symplectic Recurrent Neural Networks (SRNNs), proposed by Chen et al. [4], outperform traditional
HNNs in long-term trajectory prediction from time series data by incorporating symplectic integrators.
Similarly, Symplectic Ordinary Differential Equations (SymODEN) [36] and its dissipative variant
[35] use symplectic integrators and can also account for external forces, such as those involved in
control systems. Additionally, Xiong et al. [33] employed explicit high-order integrator schemes
within an extended phase space to address non-separable Hamiltonians.

Despite the success, many challenges are becoming apparent, mainly stemming from gradient-
based optimization of parameters using backpropagation. Backpropagation through an integrator is
computationally expensive and time-consuming [33]. Moreover, iterative gradient-descent-based
training approaches pose a significant challenge for traditional neural networks due to their slow
convergence rates [21]. Jakovac et al. [22] explored random feature models in Hamiltonian flow
approximation and reported faster training times, although their work was limited to the data-agnostic
method: Extreme Learning Machine (ELM) [18]. We adopt a strategy that is similar to that of
Bertalan et al. [1], solving system identification through a linear PDE, but replacing their Gaussian
Process ansatz with data-driven random features. Our key contributions in this work are as follows:

1. We explore data-agnostic [18] and data-driven algorithms [2, 5] to compute parameters of the
neural networks for learning Hamiltonian functions from data without backpropagation.

2. We investigate the benefits of data-driven sampling over data-agnostic approaches in
improving accuracy for systems like single/double pendulums, Lotka-Volterra, and Hénon-
Heiles.

3. We demonstrate that data-driven sampling achieves high accuracy in the unsupervised setting
with limited data using approximate initial function values.

2 Method

We consider an autonomous Hamiltonian on Euclidean space E = R2d, where d ∈ N is the number
of degrees of freedom of the underlying system. The Hamiltonian is defined as H : E → R and
incorporates the laws of motion defined through Hamilton’s equations [14, 15]

J · ∇H(q, p)− v(q, p) = 0⃗ (1)

for all
[
q
p

]
∈ E, where J =

[
0d Id
−Id 0d

]
∈ {0, 1}2d×2d, Id ∈ {0, 1}d×d is the identity matrix, 0d is

the d by d square matrix of zeros, and v = [q̇ ṗ]
T is the vector field on the phase space E which

only depends on generalized “position” q(t) ∈ Rd and “momentum” p(t) ∈ Rd coordinates.

Sampling neural networks to approximate Hamiltonian functions: We model the Hamiltonian
that we would like to approximate using a fully-connected neural network Φ following Definition A.1
with L hidden layers given data D = {qi, pi, q̇i, ṗi}Ki=1, such that

Ĥ(q, p) = Φ(q, p) = WL+1Φ
(L)(q, p) + bL+1

!
= H(q, p) for all [q p]

T ∈ E, (2)

where {Wl, bl}Ll=1 are the weights and biases of the hidden layers, WL+1 and bL+1 are the weights
and biases of the last linear layer, and we write Φ(l)(·) to represent the output of the l-th layer of the
network. To construct the hidden layers we sample the parameters {Wl, bl}Ll=1 using the following
data-agnostic and data-driven sampling schemes.
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Data-agnostic sampling: We use the “Extreme Learning Machine” (ELM) approach which is
well-studied [29, 26, 18, 18, 34, 23, 22] along with the error bounds and approximation capabilities
[19, 28, 34, 23]. In this approach, we sample the weights {Wl}Ll=1 from the standard normal
distribution and biases {bl}Ll=1 from the uniform distribution for all hidden layers.

Data-driven sampling: We use the “Sample Where It Matters” (SWIM) algorithm by Bolager
et al. [2]. Here, each weight and bias pair in the hidden layers is constructed using a data point pair

sampled from the input space so that wl,i = s1
x
(2)
l−1,i−x

(1)
l−1,i

∥x(2)
l−1,i−x

(1)
l−1,i∥

2 and bl,i = −⟨wl,i, x
(1)
l−1,i⟩−s2, where

(wl,i, bl,i) are the i-th row of the parameters in the l-th hidden layer, (x(1)
l−1,i, x

(2)
l−1,i) are the outputs

of the hidden layer (l − 1) of the data point pair sampled for constructing the parameters (wl,i, bl,i),
and (s1, s2) are constants depending on the activation function used in the associated hidden layer.
SWIM-sampled neural networks are discussed in more detail in Definition A.2.

The construction associates each hidden layer parameter with an input pair sampled from the
given data points from the input space X . In the unsupervised setting, we sample the pairs
of points uniformly randomly and refer to this as Uniform-SWIM (U-SWIM). In the su-
pervised setting, we sample the points with a density proportional to the finite differences
∥H(x(2)

0 )−H(x(1)
0 )∥/∥x(2)

l−1 − x
(1)
l−1∥ and refer to this as SWIM [2]. The intuition behind the

density in SWIM is to place more basis functions in the part of the space domain where the gradient
of the underlying function is large. To retain this efficient placement of basis functions using SWIM,
but in the unsupervised setting, we propose an adaptive approach in which we first compute an initial
approximation and then use the SWIM algorithm to re-sample the network parameters as illustrated
in Figure 1. We refer to this method as Approximate-SWIM (A-SWIM) and use U-SWIM for the
initial approximation.

After sampling all the hidden layer parameters, we discuss finding the optimal parameters for the
last linear layer of the network. Differentiating Equation (2) with respect to input x results in
WL+1∇Φ(L)(x)

!
= ∇H(x) eq. (1)

= J−1ẋ for a single data point x = [q p]
T ∈ E. Similar to [1],

we set up a fully linear system using the given data, where we replace the basis functions of the
approximation with the outputs of the last hidden layer of the network Φ:
[
∇Φ(L)(x1) · · · ∇Φ(L)(xK) Φ(L)(x0)

0 · · · 0 1

]T

︸ ︷︷ ︸
A∈R(2dK+1)×(NL+1)

·
[
WT

L+1
bL+1

]

︸ ︷︷ ︸
w∈RNL+1

!
=

[
J−1ẋ1 · · · J−1ẋK H(x0)

]T
,︸ ︷︷ ︸

u∈R2dK+1

(3)

where we write Nl for the width of the l-th hidden layer. We note that we assume we know
the true Hamiltonian value H(x0) for a single data point x0 ∈ E to fix the integration constant
bL+1 (which is only a scalar). We also assume we know the true time derivatives ẋ in this work
to avoid discretization errors. We shortly discuss error correction techniques in Appendix B if
finite differences are used to retrieve ẋ, e.g. from trajectory data. Equation (3) gives rise to a
well-studied convex optimization problem which can be solved by using the linear least squares[
WT

L+1 bL+1

]T
= argminw ∥Aw − u∥2.

The details of the algorithms for constructing sampled HNNs using the samplers ELM, U-SWIM, or
A-SWIM are provided in Algorithm A.1. The gradient ∇Φ(L) is computed analytically as we use
differentiable activation functions (σ = tanh).

3 Numerical results and discussion

In this section, we report our numerical results, including approximations of different Hamiltonian
systems with different configurations. Details regarding the experiment setup, used Hamiltonian
target functions, software versions, and the evaluated error function are explained in Appendix B.
The code is available open-source at https://github.com/AlphaGergedan/Sampling-HNNs.

Single pendulum and Lotka-Volterra experiments: Table 1 summarizes the experiments for the
single pendulum and Lotka-Volterra [10] Hamiltonian functions. The network width is scaled for
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each experiment in the table, and Figure B.3 and Figure B.4 describe how the error decays with the
network width. Firstly, we observe that the losses obtained with gradient-free training are 3-9 orders
of magnitude better. Secondly, we observe that as the domain size or the frequency of the single
pendulum increases, SWIM is usually more accurate and also needs fewer neurons to attain a certain
accuracy compared to ELM as it exploits the data to place basis functions efficiently (more where
the solution gradient is large). Thirdly, the accuracies obtained with A-SWIM are much better than
those with U-SWIM and are very close to those obtained with SWIM, even though the true values
of the Hamiltonian are not available in A-SWIM. Lastly, Figure 2 demonstrates that increasing the
frequency parameter in the single-pendulum experiment leads to steep solution gradients, where
A-SWIM and SWIM prove to be far more accurate than ELM.

Table 1: Single pendulum and Lotka-Volterra approximations are summarized. In all the listed
experiments, A-SWIM and SWIM errors have the same values up to the order that we list here
therefore we list them together in the column (A-)SWIM. Network width is set to 1000, domain and
other model parameters are set according to Table B.5 and Table B.3, respectively.

System name Hamiltonian Domain HNN ELM (A-)SWIM

Single pendulum eq. (B.4) [−2π, 2π]× [−1, 1] 2.17E-03 1.49E-11 3.62E-10
Single pendulum eq. (B.4) [−2π, 2π]× [−6, 6] 7.37E-04 9.82E-08 1.55E-09
Lotka-Volterra eq. (B.6) [−2, 2]× [−2, 2] 2.35E-03 3.04E-12 1.48E-10
Lotka-Volterra eq. (B.6) [−5, 5]× [−5, 5] 1.38E-03 1.02E-08 7.99E-09
Lotka-Volterra eq. (B.7) [0, 8]× [0, 8] 2.63E-03 3.27E-06 1.51E-08
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Figure 2: Single pendulum (with frequency parameter) approximation errors are plotted.

Chaotic systems: We summarize our experiments with the double pendulum and Hénon-Heiles
[17] systems in Table 2. The key observation is that the gradient-free training with A-SWIM is
more than 100 times faster (with CPUs) compared to the gradient-based optimization of HNNs for
the same error in the double pendulum experiment and four orders of magnitude lower error in the
Hénon-Heiles experiment. Moreover, if the initial approximation with (U-SWIM) is sufficiently
accurate, A-SWIM can closely match the SWIM method’s performance. We emphasize that while
SWIM uses true Hamiltonian values for sampling, A-SWIM relies solely on approximate values for
this process, which results in approximately double the training time.

Table 2: Summary of results for chaotic system approximations. Note that we report the CPU time.
Please refer to Table B.4 and Table B.5 for details on models.

Double pendulum Hénon-Heiles

Method Training time (s) Rel. L2 error Training time (s) Rel. L2 error

HNN 10485.4 3.62E-03 13140.6 6.68E-04
ELM 43.1 5.69E-03 46.0 2.07E-02
U-SWIM 39.6 5.00E-03 41.7 8.22E-08
A-SWIM 85.2 4.08E-03 89.4 6.80E-08
SWIM 40.0 4.18E-03 41.9 6.80E-08
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Conclusion and future work: We presented a framework for approximating Hamiltonian functions
using sampled neural networks without requiring iterative parameter optimization via backpropa-
gation. Our approach (A-SWIM) is more than two orders of magnitude faster to train on CPUs
than gradient-based optimization of HNNs in the chaotic systems we consider, and it achieves more
than four orders of magnitude greater accuracy in most examples. Our evaluation demonstrates
that data-driven sampling via SWIM outperforms data-agnostic methods when the function being
approximated has steep gradients or large input domains. We note that our approach requires solving a
large linear system. In higher dimensional examples that require a lot of computational requirements,
one can rely on HPC resources and iterative solvers. In the future, we intend to extend this work to
dissipative systems, as this work assumes symplecticity, while most real-world systems are dissipative.
Another important direction is to extend our algorithm to handle noisy data. Lastly, the longer training
times reported in [33] may be compensated by utilizing sampled networks to learn the flow map of
Hamiltonian systems where using backpropagation is computationally expensive.
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Appendix

A Mathematical framework

Feed-forward neural networks: In this paper, we work with feed-forward neural networks config-
ured for regression, i.e., no activation is used in the output layer to approximate a Hamiltonian. We
define the notation used for neural networks in this work in Definition A.1.
Definition A.1. Let X ⊆ RD be an input space, and Y ⊆ R a one-dimensional output space. We
write

Φ(l)(x) =





x, for l = 0

σ(WlΦ
(l−1)(x) + bl), for 0 < l ≤ L

WL+1Φ
(L)(x) + bL+1, for l = L+ 1

as the output of the l-th layer of a network Φ with L hidden layers, where

• σ : R→ R is an activation function applied element-wise,

• {Wl, bl}L+1
l=1 are the parameters of Φ: weights and biases, where Wl ∈ RNl×Nl−1 and

bl ∈ RNl . Nl is the number of neurons in the l-th layer with N0 = D and NL+1 = 1.

We write Φ(x) ∈ Y for the network output given a single data point x ∈ X and Φ(X) ∈ YK given
an input matrix X ∈ XK×D.

“Sample Where It Matters” (SWIM): Our work is closely related to [2] as we use their SWIM al-
gorithm for the data-driven sampling of the hidden layer parameters. In Definition A.2 we summarize
a SWIM-sampled network from [2] to provide the overall idea of using data to sample the hidden
layer parameters.

Definition A.2. Let Φ be a network as defined in Definition A.1. For l = 1, . . . , L let x(1)
0,i , x

(2)
0,i be

pairs of points sampled over X × X . If the weights and biases of each layer l = 1, 2, . . . , L and
neuron i = 1, 2, . . . , Nl have the form

wl,i = s1
x
(2)
l−1,i − x

(1)
l−1,i

∥x(2)
l−1,i − x

(1)
l−1,i∥

2 , bl,i = −⟨wl,i, x
(1)
l−1,i⟩ − s2 ,

then we say the hidden layer parameters {Wl, bl}Ll=1 are SWIM-sampled and Φ is a SWIM-sampled
network. ∥·∥ is the L2 norm, ⟨·, ·⟩ the inner product, and

• s1, s2 ∈ R are constants to place the outputs of the activation function for every input pair
{x(1), x(2)}. For tanh, the only activation function that we use in our numerical experiments,
s1 = 2s2 and s2 = ln(3)/2 are set, which implies σ(x(1)) = 1/2 and σ(x(2)) = −1/2, and
σ((x

(1)+x(2))/2) = 0,

• x
(k)
l−1,i = Φ(l−1)(x

(k)
0,i ) for k ∈ {1, 2} and x

(1)
l−1,i ̸= x

(2)
l−1,i,

• we write wl,i for the i-th row of Wl and bl,i for the i-th entry of bl.

The authors also provide a probability distribution for the data points in the input space X (see Defini-
tion A.3) to sample where it matters: at large gradients. The supervised SWIM algorithm we evaluate
utilizes this distribution.
Definition A.3. Let X be an input space and let Y = f(X ) be the function space given a function
f : X → Y . When sampling a SWIM-sampled network as defined in Definition A.2, for hidden layers
l = 1, . . . , L the probability density pϵl to sample pairs of points to be used for the corresponding
hidden layer can be defined through the proportionality

pϵl

(
x
(1)
0 , x

(2)
0 |{Wj , bj}l−1

j=1

)
∝





∥f(x(2)
0 )−f(x

(1)
0 )∥Y

max

{
∥x(2)

l−1−x
(1)
l−1∥Xl−1

, ϵ

} , for x(1)
l−1 ̸= x

(2)
l−1

0, otherwise
,

where
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• x
(k)
0 ∈ X and x

(k)
l−1 = Φ(l−1)(x

(k)
0 ) for k ∈ {1, 2} with the sub-network Φ(l−1)

parametrized by SWIM-sampled parameters {Wj , bj}l−1
j=1 which can be defined recursively

using the density function pϵl−1 for L > 1,

• Xl−1 = Φ(l−1)(X ) is the image after (l − 1) layers,

• assuming distinct inputs to the network we have ϵ = 0 for l = 1 and ϵ > 0 otherwise. We
only experiment with shallow networks in this paper so we do not have to set this parameter
in our experiments,

• the norms ∥·∥Y and ∥·∥Xl−1
are arbitrary over their respective space, we choose the L∞

norm for ∥·∥Y and the L2 norm for ∥·∥Xl−1
in our experiments.

The probability density above can only be used in a supervised setting. The networks that we construct
that use this distribution using the true function values f(·) are denoted as SWIM, and the ones
that use this distribution using approximate function values are denoted as A-SWIM. For the initial
approximation, we use the uniform distribution over the pairs of points in the input space X . The
networks that are constructed using the uniform distribution are denoted as U-SWIM.

Algorithm A.1: Our proposed HNN sampling algorithm is illustrated. L is a loss function, which
in our case is the L2 loss, and argminL(·, ·) becomes a linear optimization problem that we
solve using the least squares solution argminw ∥Aw − u∥2 of the linear system in Equation (3).

Data: {xi, ẋi}Ki=1 , {x0,H(x0)} , sampler ∈ {ELM, U-SWIM, A-SWIM}
Φ(0)(X) = X;
for l = 1, 2, . . . , L do

Wl ∈ RNl×Nl−1 , bl ∈ RNl ;
if sampler is ELM then

Wl, bl ← ELM();
else

Wl, bl ← U-SWIM(Φ(l−1)(X));
Φ(l)(·)← σ(WlΦ

(l−1)(·) + bl);
end

end
compute ∇Φ(L);
WL+1, bL+1 ← argminL(∇Φ(L),D);
if sampler is A-SWIM then
Ĥ(X)← Φ(X);
for l = 1, 2, . . . , L do

Wl ∈ RNl×Nl−1 , bl ∈ RNl ;
Wl, bl ← SWIM(Φ(l−1)(X), Ĥ(X));
Φ(l)(·)← σ(WlΦ

(l−1)(·) + bl);
end
compute ∇Φ(L);
WL+1, bL+1 ← argminL(∇Φ(L),D);

end
return Φ;

B Numerical experiments

The experiments in this section are conducted on the Linux cluster segment CoolMUC-3 at Leibniz
Supercomputing Centre (LRZ). CoolMUC-3 provides 148 nodes (64 cores per node) running at the
nominal frequency of 1.3 GHz and with ≈ 96 GB memory (bandwidth 80 GB/s ). Note that we have
only used a single node with 64 threads in all the experiments.
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For a fair evaluation, we train the networks and take the mean error values of 10 randomly conducted
runs, which include different seeds for the model and the generated distinct train and test sets. We
use the linear solver numpy.linalg.lstsq for solving the least-squares optimization problem
with python and numpy [16] versions 3.12.4 and 1.26.4, respectively. We train the HNNs in our
experiments with the HNN loss [12] using the Adam optimizer implementation torch.optim.Adam
from torch [27] version 2.4.0. The weights of the HNNs are initialized using the Xavier normal
distribution [11], and the biases of the HNNs are zero-initialized. Similarly to the sampled HNNs,
we set the integration constant, i.e., the last layer bias, accordingly assuming we know the true
function value for a single data point. We used double precision (float64, both in numpy and
pytorch) in our experiments. For more information regarding other software versions, random
seeds, and the implementation, please refer to the open-source code repository available at https:
//github.com/AlphaGergedan/Sampling-HNNs.

In all the figures, we plot the mean error values of multiple runs and paint the area around this error
curve using the minimum and maximum error values to demonstrate the consistency of the methods
using the Matplotlib library [20].

In all the experiments, we used SWIM sampling with the approximate values resulting from U-SWIM
for the A-SWIM method. For comparison, we also used SWIM sampling with the true function
values and denoted this method as SWIM in the figures.

Error function: We compare the relative (rel.) L2 error
√√√√

∑
i (H(qi, pi)− Ĥ(qi, pi))

2

∑
iH(qi, pi)

2

when analyzing and evaluating the approximations using all the points in the test set, where Ĥ
represents the final approximation (trained model) and H the true Hamiltonian. In all tables, the
mean error value of 10 randomly conducted runs is given for each entry for sampled networks.

Target Hamiltonian functions: Target Hamiltonian functions, which we aim to approximate in
this work, are the following. The single pendulum Hamiltonian

H(q, p) = p2

2ml2
+mgl(1− cos(q))

=
p2

2
+ (1− cos(q)) (B.4)

for the experiments in Figure B.3, where we set the constants (mass m, link length l, gravitational
acceleration g) to 1. The single pendulum is extended with a frequency parameter resulting in the
function

H(q, p) = p2

2
+ (1− cos(fq)) (B.5)

for the experiments in Figure 2. The Lotka-Volterra [10] Hamiltonian

H(q, p) = βeq − αq + δep − γp

with parameters β = −1, α = −2, δ = −1, γ = −1 and β = 0.025, α = 3.5, δ = 0.07, γ = 10 for
the zero-centered and five-centered domains, respectively, resulting in the functions

H(q, p) = −eq + 2q − ep + p (B.6)

and
H(q, p) = 0.025eq − 3.5q + 0.07ep − 10p (B.7)

for the experiments in Figure B.4. The double pendulum Hamiltonian

H(q, p) = m2l
2
2p

2
1 + (m1 +m2)l

2
1p

2
2 − 2m2l1l2p1p2 cos(q1 − q2)

2m2l21l
2
2(m1 +m2 sin

2(q1 − q2))

− (m1 +m2)gl1 cos(q1)−m2gl2 cos(q2)

=
p21 + 2p22 − 2p1p2 cos(q1 − q2)

2(1 + sin2(q1 − q2))
− 2 cos(q1)− cos(q2), (B.8)
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where we set the constants (mass m1 and m2, link lengths l1 and l2, gravitational acceleration g) to 1
for the experiments in Table 2. The Hénon-Heiles [17] Hamiltonian

H(q, p) = 1

2
(p21 + p22) +

1

2
(q21 + q22) + α(q21q2 −

1

3
q32), (B.9)

where we set the bifurcation parameter α = 1 for the experiments in Table 2.

Single pendulum: We show that all the methods can reach very low approximation errors in
Figure B.3 when approximating the single pendulum Hamiltonian.
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Figure B.3: Single pendulum approximation errors and training times for the larger domain are
plotted. See Table B.5 and Table B.3 for domain and model parameters.

Especially in the larger domain and with smaller network widths, SWIM sampling outperformed
ELM. On the other hand, while the SWIM methods’ performance remained consistent, ELM could
reach lower approximation errors in both domains with large network widths (more than 600 in the
smaller, 2000 in the larger domain). In the larger domain, the gradients of the system move away
from zero, and with large gradients where the function values change quickly in the target function,
the SWIM methods might have constructed better (more accurate and consistent) weights using
the data-driven scheme with small network widths. Also, ELM may need larger network widths
to be able to cover the input space uniformly in larger domains. Remarkably, A-SWIM can match
the SWIM method’s accuracy in all the settings with an additional training time cost of resampling
after the initial approximation. Again, we emphasize that A-SWIM does not have access to the true
function values but uses approximate function values to utilize the SWIM sampling scheme, whereas
SWIM requires the true function values.

Lotka-Volterra: We experiment with Lotka-Volterra Hamiltonians in different settings in Fig-
ure B.4. Similar to the single pendulum experiments, the ELM method performed better with large
network widths than the SWIM sampling, however, its performance has declined in the larger domains
where the gradients are larger. Also, note that when the equilibrium changes to a vector close to 5 in
both dimensions, ELM method becomes less consistent.
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Figure B.4: Lotka-Volterra approximation errors are plotted. The target Hamiltonian in the left and
center plots has an equilibrium near the zero-vector, whereas the target Hamiltonian in the right plot
has an equilibrium around five in both dimensions. Domain and model parameters are set according
to Table B.5 and Table B.3
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Chaotic-systems: In addition to the results in Table 2, we provide network scaling for the double
pendulum and note that all the methods perform similarly in Figure B.5. To efficiently train HNNs
using backpropagation, we have also tried using the NVIDIA GeForce RTX 3060 Mobile / Max-Q
graphics card with CUDA version 12.4 for the chaotic systems using the same settings as in Table 2.
GPU time of the double pendulum and Hénon-Heiles experiment was 7313.1 and 7788.9 seconds
respectively. Using single precision has resulted in ≈ 2.5 times faster training without losing a lot of
accuracy. However, training HNNs using our approach was still more than 20 times faster with CPUs.
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Figure B.5: Double pendulum approximation errors and training times are displayed. Network width
was scaled and other model parameters were set as described in Table B.4. Domain information is
listed in Table B.5.

Table B.3 and Table B.4 list model parameters, and Table B.5 list domain parameters used in the
numerical experiments in this work. ELM bias distribution specifies the distribution used for sampling
the hidden layer biases for the ELM method. For all the experiments we use the Uniform distribution
with min and max set to the minimum and maximum domain range. Note that we do not fix this
distribution to have a more fair comparison of the weight sampling used in ELM compared to other
methods, as we have noticed a strong decline in the accuracy of ELM if the bias is sampled from a
fixed range and the target domain is scaled drastically. For the SWIM methods, we make sure that
different pairs of points are selected for different neurons for the weight construction to avoid any
duplicates by re-sampling if a duplicate is detected and repeat this until we get unique pairs, i.e.,
unique parameters.

Conservation of the Hamiltonian value: Greydanus et al. [12] have demonstrated energy conser-
vation of traditional HNNs compared to plain MLPs (which directly output system dynamics q̇ and ṗ)
along trajectory predictions. We demonstrate this property using sampled networks too in Figure B.6.

Learning from trajectory data with error correction: Learning from trajectory data consisting
of generalized “position” q and “momentum” p coordinates only has been studied in many recent
work. Zhu et al. [37] theoretically analyzes the training of traditional HNNs using finite differences
with symplectic and non-symplectic integration schemes. Networks trained with integrator schemes
learn the network targets rather than the true Hamiltonian due to discretization errors. Their work
aligns with the numerical results presented by Chen et al. [4], where the trained networks account
for the numerical errors. An adapted loss was proposed by Zhu et al. [37], which is then adapted for
Gaussian Processes by Offen and Ober-Bloebaum [25]. In later work, David and Mehats [6] adapted
a post-training correction method to account for the discretization errors for traditional HNNs trained
with symplectic integrators to recover the true Hamiltonian function of the target system. In the rest
of this section, we incorporate this correction scheme into Equation (3) and demonstrate that it can
also be applied to sampled HNNs that we introduce in this paper.

Given a trajectory dataset D = {xi, φh(xi)}Ki=1 where φh is the exact flow of the target Hamiltonian
system with time step size ∆t = h > 0. Note that any trajectory of arbitrary length can be written to
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Table B.3: Model parameters in the single pendulum (Figure B.3 and Table 1), single pendulum
with frequency (Figure 2), and Lotka-Volterra (Figure B.4 and Table 1) experiments are listed. ELM
bias distribution is set using the minimum and maximum domain boundaries. Therefore, for Lotka-
Volterra experiments, it is set as Uniform({−2,−5, 0}, {2, 5, 8}) depending on the domain. The
last four columns are the parameters of the traditionally trained HNN, including the total number
of gradient steps in training, learning rate and weight decay in the Adam optimizer, and batch size.
For Lotka-Volterra experiments, the total number of gradient steps is set to either 15000 or 30000,
depending on the domain size.

Parameter Single pendulum Single pendulum with f Lotka-Volterra

Number of layers 1 1 1
Network width See fig. B.3 1500 See fig. B.4
Activation tanh tanh tanh
L2 regularization 10−13 10−13 10−13

ELM bias distribution Uniform(−π, π) Uniform(−π, π) See table caption
HNN #gradient-steps 15000 - See table caption
HNN learning rate 5 · 10−4 - 5 · 10−4

HNN weight decay 10−13 - 10−13

HNN batch size 2048 - 2048

Table B.4: Model parameters in the double pendulum and Hénon-Heiles experiments (see Table 2)
are listed.

Parameter Double pendulum Hénon-Heiles

Number of layers 1 1
Network width 5000 5000
Activation tanh tanh
L2 regularization 10−13 10−13

ELM bias distribution Uniform(−π, π) Uniform(−5, 5)
HNN #gradient-steps 180000 180000
HNN learning rate 10−4 10−4

HNN weight decay 10−13 10−13

HNN batch size 2048 2048

Table B.5: Domain parameters of the target Hamiltonians in the experiments are listed.

System name Hamiltonian Domain Train set size Test set size

Single pendulum eq. (B.4) [−2π, 2π]× [−1, 1] 10000 10000
Single pendulum eq. (B.4) [−2π, 2π]× [−6, 6] 10000 10000
Single pendulum eq. (B.5) [−π, π]× [−0.5, 0.5] See fig. 2 10000
Lotka-Volterra eq. (B.6) [−2, 2]× [−2, 2] 10000 10000
Lotka-Volterra eq. (B.6) [−5, 5]× [−5, 5] 10000 10000
Lotka-Volterra eq. (B.7) [0, 8]× [0, 8] 10000 10000
Double pendulum eq. (B.8) [−π, π]2 × [−1, 1]2 20000 20000
Hénon-Heiles eq. (B.9) [−5, 5]2 × [−5, 5]2 20000 20000

have the form of D if the points in the trajectory are considered as pairs. Similar to [25], we adapt the
linear system Equation (3), which we aim to solve, to use the finite differences on the right-hand side,
and the symplectic Euler integration scheme on the left-hand side:




∇Φ(L)(φh(q1), p1) 0
∇Φ(L)(φh(q2), p2) 0

...
...

∇Φ(L)(φh(qK), pK) 0
Φ(L)(x0) 1



·
[
WT

L+1
bL+1

]
!
=




J−1 · ((φh(x1)−x1)/h)
J−1 · ((φh(x2)−x2)/h)

...
J−1 · ((φh(xK)−xK)/h)

H(x0)



. (B.10)
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Figure B.6: Sampled-HNN outputs the Hamiltonian value, while Sampled-MLP directly approximates
the time derivatives of the inputs q̇ and ṗ. Single pendulum is approximated with the same domain
and model parameters used in the larger domain single pendulum experiments (domain [−2π, 2π]×
[−6, 6]) and both Sampled-MLP and Sampled-HNN are sampled according to the ELM method. The
trained models and the true Hamiltonian are integrated using symplectic Euler with time step size
5 · 10−4 from the initial coordinates x0 = (π/2, 0).

David and Mehats [6] used the well-established error analysis by Hairer et al. [13] (Chapter 9,
Example 3.4) for the symplectic Euler method

Ĥ = H− h

2
∇qHT∇pH+O(h2),

and corrected the discretization error of a trained traditional HNN up to an order as

H ≈ Ĥ+
h

2
∇qĤ

T∇pĤ.

We use the same correction scheme using analytical solutions for a sampled HNN Φ as

H ≈ Φ+
h

2
∇qΦ

T∇pΦ,

and demonstrate the error correction for the single pendulum system on domain [−π, π]× [−1, 1] with
train set size 2500 with their next states after time step h, test set size 2500, L2 regularization 10−13

and network width 200 using the A-SWIM method for the sampling in Figure B.7. The true flow of
the target system is simulated using the explicit Runge-Kutta method of order 5(4) implementation
from scipy.integrate.solve_ivp [31] with time step size 10−4.

0.05 0.1 0.2 0.4 0.8

Step size h

10−4

10−3

10−2

10−1

100

R
el

.
L

2
er

ro
r

ε ∈ O(h)

ε ∈ O
(h

2 )

symp. Euler

corrected symp. Euler

Figure B.7: Single pendulum Hamiltonian approximation errors are displayed with and without
error correction together with reference lines ϵ = h and ϵ = h2. Symp. Euler stands for the
A-SWIM method using finite differences and symplectic Euler integration scheme as described in
Equation (B.10).
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