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Abstract

Machine learning is increasingly successful in modeling physical systems in science
and engineering. Integrating physical information, like PDEs, can enhance model
performance and address generalization issues caused by limited, costly data.
However, since PDEs heavily rely on fine-grained states to calculate the derivative,
the integration of physical information into models is significantly challenged by the
coarse-grained nature of measurement, often due to sensor limitations. To address
the challenge, we introduce the Physics-Informed Coarse-grained data Learning
(PICL) framework to enhance the model’s generalization for predicting future
coarse-grained observations. The key idea is to re-enable the physics-based loss on
the transition between adjacent fine-grained states corresponding to the available
coarse-grained data. The challenge is how to reconstruct the corresponding fine-
grained state by only using coarse-grained data. We discover that the physics-based
loss can also address this challenge. PICL combines an encoding module for
reconstructing learnable fine-grained states with a transition module for predicting
future states. The two modules are jointly trained by data and physical information.
The experiment results confirm PICL’s significant improvement in generalization
capacity in various physical systems.

1 Introduction

Using machine learning methods to approximate physical systems has become a promising direction
in science and engineering, e.g., fluid dynamics, diffusion, and so on [41, 35]. Since the data
collection procedure is always both time and cost-consuming, a limited amount of data will hurt the
generalization of the physical system modeling. Recently, some works have introduced physical
information (e.g., PDEs) in training models and achieved promising performance [22, 6, 9, 31, 12] to
reduce the use of costly data and improve generalization capacity of physical system models. Most
works rely on fine-grained data to calculate or approximate the derivative for physics-based loss, but
the application of physical information for modeling physical systems is significantly challenged
by the coarse-grained nature of measurement, often due to sensor limitations [13, 27, 38, 1, 14].
Computing partial derivatives in physics-based loss with coarse-grained data introduces significant
biases, leading to a dilemma: either we avoid integrating physical information into the model, thereby
weakening its generalization capability, or we incorporate the biased physical information, which can
also hurt the model’s performance. As a result, a scientific problem has been emerged:

Whether and how can we improve the model’s generalization capacity by incorporating physical
information when only coarse-grained data is available?
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In this work, we introduce a novel Physics-Informed Coarse-grained data Learning framework,
known as PICL, that can effectively incorporate physical information into the training of physical
system models when we only have coarse-grained data thereby enhancing the model’s capacity to
generalize and predict future coarse-grained observations. The core idea is that we can re-enable the
physics-based loss on the transition between adjacent fine-grained states corresponding to the coarse-
grained data. The challenge behind the idea is how to reconstruct the corresponding fine-grained
state by only using coarse-grained observation. We find that physical information can also play a
key role to solve this challenge. The PICL mainly comprises an encoding module and a transition
module. The fundamental procedure is to reconstruct the learnable fine-grained state from coarse-
grained observation by using the encoding module and then predict the subsequent state with the
transition module. However, it is hard to train the encoding module without available fine-grained data
through data-driven supervised methods. Therefore, we use several recent consecutive observations
to generate a learnable fine-grained state by drawing inspiration from the PDEs formulation and finite
difference method (FDM), where there exists an equivalence relation between temporal and spatial
differences, allowing for interconversion between them, then train it via a physics loss.

We designed to train the encoding and transition modules jointly with two periods: a base-training pe-
riod and a two-stage fine-tuning period. In base-training period, the encoding module is trained using
a physics loss without requiring fine-grained data. The transition module is trained collaboratively
using the data loss and physics loss to overcome the generalization issues due to data scarcity. In
two-stage fine-tuning period, the framework leverages unlabeled data in a semi-supervised learning
manner to further improve the model’s generalization. The transition module is first fine-tuned with
unlabeled data and physics loss independently; then, their information is propagated to the encoding
module, which is fine-tuned using data loss calculated on the original labeled data.

Our contributions can be summarized in two parts: (1) We propose a general physics-informed deep
learning framework called PICL to improve the model’s generalization capacity by incorporating
physical information if we only have coarse-grained data. (2) We demonstrate that PICL leads to a
significant improvement in generalization for predicting the future coarse-grained observations, than
baseline methods, across various physical systems.

2 Related Work

Physics-informed machine learning: More and more physics-informed machine learning methods
have been proposed to learn the solutions of PDEs [16], including neural operator [26, 20–22,
36, 10, 1, 39, 14] and physics-informed neural networks (PINNs) [29, 37, 2, 16]. These works
leverage physical information in constructing physics loss or network structure, thereby modeling
or solving PDEs dynamics. The key to their success is the incorporation of accurate physical
information, including fine-grained data or formulas of PDEs. However, they cannot be applied to
learn coarse-grained data directly, as their physics-informed training manner brings significant bias
when calculating coarse-grained data.

Fine-grained state reconstruction: This task aims to reconstruct a fine-grained state from its
coarse-grained counterpart, also known as super-resolution in some works [43, 19]. The task mainly
focuses on computer vision (CV) and physical systems. In CV, after the pioneering study by the
work [3], numerous deep learning-based models [23, 33, 28, 42], and generative models [18, 25, 8]
have emerged. In physical systems, the task has attracted more and more attention [31], which aims
to integrate physical information into models [34, 4, 5, 15, 31, 32] or not need for data [7, 17, 40].
Among them, most rely on fine-grained data to do supervised learning; only a small part relies on
physical information, thus resulting in relatively larger reconstruction errors without leveraging data
information.

Different from the above related works, our framework does not require fine-grained data but
rather shows that by a carefully designed framework, the physics-informed training manner can be
incorporated with coarse-grained data and further improve model’s generalization capacity.

3 Problem Description

We aim to use physical information to improve model’s generalization for predicting future coarse-
grained observations when only coarse-grained data is available in physical systems. Denote ut ≜
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Figure 1: PICL. Training (left): In the base-training period, the encoding module is trained by LD

and Lθ
P , and the transition module is trained by LD and Lϕ

P . These losses are calculated on labeled
dataset D. Then, in the two-stage fine-tuning period, the transition module is tuned by Lϕ

P , calculated
on unlabeled dataset B, and the encoding module is tuned by LD, calculated on D, in order. Inference
(right): given the coarse-grained observation to predict future coarse-grained observations.

u(t) ∈ U as a state, we want to infer ut+τ for τ > 0 at any time t. U is the functional space of
form Ω → Rn, where Ω ⊂ Rp is the set of observational point location, and n is the number of
system variable. That is to say, ut is a function of x ∈ Ω, with vectorical output ut(x) ∈ Rn. In
such problems, trajectories share the same dynamics but vary by their initial conditions (ICs) u0 ∈ U .
We observe a finite training set of trajectories D with label and B without label from trajectories
given different ICs u0, using a coarse-grained spatial observation grid X ⊂ Ω on discrete times
t ∈ T ⊂ [0, T ]. In inference, the coarse-grained dataset is observed with X . Note that inference is
performed on test data observed from trajectories given different ICs to verify model’s generalization
to different trajectories.

4 Methodology
4.1 Overview of PICL

As we mentioned in the introduction, the incorporation of physical information to model is crucial for
the model generalization but is significantly challenged by coarse-grained data. To re-enable the use
of physical information, PICL constructs physics loss on the transition between adjacent fine-grained
states corresponding to the coarse-grained data (transition module). Furthermore, the physics loss can
also help to reconstruct the corresponding fine-grained state by only using coarse-grained observation
(encoding module). PICL jointly trains these two modules to effectively employ physical information
to enhance the model’s generalization. As shown Fig. 1 (left), there are two training periods: Base-
training period: The encoding module is trained with a physics loss without fine-grained data,
while the transition module is trained collaboratively using data loss and physics loss. Two-stage
fine-tuning period: It utilizes unlabeled data semi-supervisedly for further improvement. The first
stage involves fine-tuning (FT) transition module independently, with physics loss calculated on
unlabeled data. Then, their information is propagated to encoding module in the second stage by
fine-tuning with data loss calculated on original labeled data.

4.2 Model Components

We present all the model components in Fig. 1. Here we introduce each of them separately. Encoding
module: Eθ(u

n
t ). The encoding module computes the learnable fine-grained state ht given the

coarse-grained observation. We use n temporal features of un
t = {ut−i∗τ}ni=0 to compute the more

reliable ht. Transition module: fϕ(ht). After the encoding module outputs the learnable fine-
grained state ht, we then model their dynamics using a neural network. Specifically, fϕ : Rdh → Rdh

to predict the subsequent fine-grained state ht+τ , where dh defines the dimensionality of the latent
space. Down-sampling: D(ht+τ ). Please note that data in D is coarse-grained, according to Fig. 1
(left), we define a down-sampling operation as D : Rdh → U after the transition module, with the
known coordinates.
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Table 1: Relative loss LD (↓) and reconstruction error ϵ = ∥ĥt−ht∥
2

∥ht∥2
(↓). Our framework achieves

better prediction results than all other baseline methods. Best in bold and second best underline.

EXPERIMENTS PIDL LNPDE GNOT PERCNN FNO FNO* PINO* PICL

BURGERS
LD 1.43E-1 1.05E-1 1.93E-2 3.03E-1 1.68E-2 1.69E-2 6.35E-2 1.37E-2
ϵ 9.80E-6 - - 0.98 - 6.84E-5 9.81E-6 1.85E-6

WAVE
LD 1.28 9.93E-1 1.33E-1 5.44E-1 1.11E-1 3.58E-2 1.01 2.64E-2
ϵ 1.19 - - 1.18 - 2.17 2.09 1.06

NSE LD 6.45E-1 6.35E-1 1.18E-1 5.07E-1 1.06E-1 1.68E-2 4.70E-1 1.34E-2
ϵ 1.71E-2 - - 1.07 - 1.85E-2 1.07E-2 2.76E-8

LSWE LD 7.60 9.26E-2 1.19E-1 4.92E-1 7.92E-2 4.75E-2 7.60 2.44E-2
ϵ 1.38E-3 - - 0.97 - 6.82E-3 1.63E-3 1.47E-3

NSWE LD 2.34E-1 6.70E-2 1.63E-1 4.06E-1 1.01E-1 6.41E-2 2.32E-1 3.50E-2
ϵ 3.16E-1 - - 1.30 - 1.74 3.18E-1 2.03E-1

4.3 Model Learning

To overcome the challenge mentioned in the introduction when training two modules, we propose a
learning strategy with two periods using the physics loss function, including a base-training period
given the labeled train sequences D and a two-stage fine-tuning period given the unlabeled data B.

Loss functions: We design the loss function with data loss and physics loss as follows:

LPI(θ, ϕ,D) = LD(θ, ϕ,D) + γLθ
P (θ,D) + γLϕ

P (ϕ,D),

where LD(θ, ϕ,D) =
∥ût+τ − ut+τ∥2

∥ut+τ∥2
, Lθ

P (θ,D) = F (hθ
t , h

θ
t+τ )

2, Lϕ
P (ϕ,D) = F (hθ

t , h
ϕ
t+τ )

2,
(1)

where D is the labeled dataset and (ut, ut+τ ) ∈ D; LD is the relative l2 data loss calculated on
coarse-grained data. Lθ

P and Lϕ
P denote the physics losses of encoding module and transition module;

γ is the weight of physics loss.

Base-training period: The base-training period can be formalized as a data loss and a physics loss
joint optimization problem that we solve in parallel:

θ∗, ϕ∗ = argminθ,ϕ LPI(θ, ϕ,D). (2)

For training the encoding module to offset the complete lack of fine-grained data, we propose to
encode input un

t and label un
t+τ to learnable fine-grained state ht and encoded ht+τ using the same

encoding module, which can be used to calculate Lθ
P in training. The derivative of Lθ

P with respect
to the parameter θ in the encoding module is calculated. To train the transition module and improve
generalization for predicting, Lϕ

P is computed between the input ht and the predicted subsequent
ht+τ , and the derivative of Lϕ

P with respect to the parameter ϕ in the transition module is calculated.

Two-stage fine-tuning period: We leverage unlabeled data to tune both modules after the base-
training period to improve model’s generalization further, as shown in Fig. 1 (left). We first optimize
ϕ and then optimize θ. The period can be formalized as an optimization problem:

ϕ∗ = argminϕ Lϕ
P (ϕ,B), θ

∗ = argminθ Lθ
P (θ,D), (3)

where B is the unlabeled dataset and the definition of Lϕ
P is same as Eqn. 1, except for ut ∈ B.

Intuitively, we first fine-tune the transition module with only Lϕ
P on unlabeled data B to make ht

and predicted ht+τ more in line with physics loss. However, as the encoding module and transition
module are first trained via LD together in base-training period, the fine-tuned transition module
mismatches encoding module now, leading to deteriorating performance in general. Thus, we then
fine-tune encoding module with LD on D. By using this order, we can propagate information of
unlabeled data and physics from transition module to encoding module.

5 Experiments

We consider five PDEs which can represent common physical systems in real world: Burgers
equation (Burgers), wave equation (Wave), Navier Stokes equation (NSE), linear shallow water
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Table 2: Relative loss LD (↓) of the data numbers of partial observation.

|D| FNO* PICL PICL W/O FT
50 1.28E-1 8.81E-2 9.53E-2

100 1.07E-1 6.88E-2 7.34E-2
300 6.41E-2 3.50E-2 3.69E-2
350 5.59E-2 3.21E-2 3.32E-2

Table 3: Relative loss LD (↓) of the number of corresponding high-resolution states if available.

FNO* PICL
W/O HIGH-RESOLUTION STATES 6.41E-2 3.50E-2

WITH 1/3 HIGH-RESOLUTION STATES 5.13E-2 3.41E-2
WITH 1/2 HIGH-RESOLUTION STATES 5.01E-2 3.35E-2
WITH ALL HIGH-RESOLUTION STATES 4.70E-2 3.29E-2

equation (LSWE), nonlinear shallow water equation (NSWE). We compare our proposed framework
with seven baselines: PIDL, a physics-informed deep learning approach using finite difference-based
physics loss, previously applied in [24], LNPDE [14], GNOT [11], PeRCNN [30], FNO [21], FNO*
enhancing FNO by attaching the same encoding module as in PICL, with γ = 0 in Eqn. 1, PINO
[22], merging data and physics loss like FNO*, calculating physics loss between ut and ut+τ .

As shown in Table. 1, PICL shows a significant improvement against all baselines on five benchmarks.
PICL has at least 25% (against FNO* in NSE) to more than 99% (against PINO* in LSWE)
improvement on LD compared with all baselines. Moreover, PICL simultaneously has over 36%
(against PINO* in NSWE) improvement on ϵ than most of the baselines, which means PICL can
reconstruct the more accurate fine-grained state. We consider it a reason why PICL can learn the
physical system models with better generalization. Note that in LSWE, reconstruction error ϵ of PIDL
is slightly better than ours, but its data loss LD is much larger than ours because PIDL focuses on
training the model with physics loss only, ignoring the data constraint for predicting. In general, PICL
achieves better performance than all baselines, which demonstrates its modeling and generalization
capacity.

Furthermore, we evaluate the impact of data numbers for the partial observation D and high-resolution
states, if available, by experiments on NSWE. (1) Using different numbers of trajectory |D|, and
(2) assuming almost 1/3, 1/2, and all partial observations have corresponding high-resolution states
used as labels for the encoding module, allowing more accurate state reconstruction to explore if
they can improve the performance. (i) Table 2 shows that LD decreases as |D| increases; larger
data volumes enhance model generalization. With less data, our framework still outperforms FNO*,
although it’s more effective with more data. (ii) Table 3 reveals that both FNO* and PICL benefit
from increased high-resolution states, with PICL showing greater improvements. Please note that
the relative improvement of PICL over FNO* decreases with the increase of high-resolution states,
indicating PICL’s function in compensating for the lack of high-resolution states.

One of the contributions of our proposed framework is that we propose the two-stage fine-tuning
training strategy. It is an important part of PICL as the data scarcity tend to cause the generalization
issues, especially when data acquisition is costly and only partial observation is available. We conduct
the ablation study on the relationship between the data and the effect of fine-tuning. In Table 2,
the PICL w/o FT means PICL is not trained by the two-stage fine-tuning period. PICL has greater
improvement than PICL w/o FT when data is limited, as leveraging the unlabeled data provides
additional information.

6 Conclusion

In this paper, we proposed PICL, a physics-informed coarse-grained data learning framework to re-
enable the application of physical information when only coarse-grained data is available. PICL aims
to improve model generalization in predicting future coarse-grained observations by using an encoding
module and transition module training by the two-period strategy. Through five physical system
examples, we demonstrate how incorporating physical information enhances model performance.
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