
Fast GPU-Powered and Auto-Differentiable Forward
Modeling of IFU Data Cubes

Ufuk Çakır∗
Interdisciplinary Center

for Scientific Computing,
University of Heidelberg,

Im Neuenheimer Feld 205,
D-69120 Heidelberg

mail@cakir-ufuk.de

Anna Lena Schaible
Interdisciplinary Center

for Scientific Computing,
University of Heidelberg,

Im Neuenheimer Feld 205,
D-69120 Heidelberg

annalena.schaible@iwr.uni-heidelberg.de

Tobias Buck
Interdisciplinary Center

for Scientific Computing,
University of Heidelberg,

Im Neuenheimer Feld 205,
D-69120 Heidelberg

tobias.buck@uni-heidelberg.de

Abstract

We present RUBIX, a fully tested, well-documented, and modular Open Source
tool developed in JAX, designed to forward model IFU cubes of galaxies from
cosmological hydrodynamical simulations. The code automatically parallelizes
computations across multiple GPUs, demonstrating performance improvements
over state-of-the-art codes by a factor of 600. This optimization reduces compute
times from hours to only seconds. RUBIX leverages JAX’s auto-differentiation
capabilities to enable not only forward modeling but also gradient computations
through the entire pipeline paving the way for new methodological approaches
such as e.g. gradient-based optimization of astrophysics model parameters. RUBIX
is open-source and available on GitHub2.

1 Motivation

In the field of astrophysics, researchers are divided into two main groups: observers and theorists.
Observers build and operate advanced instruments and telescopes, such as the James Webb Space
Telescope (JWST) and the Very Large Telescope (VLT), to collect empirical data from distant galaxies
and stars by counting photons. Integral Field Unit (IFU) spectroscopy is one key observational tech-
nique that produces datacubes with spatially resolved spectra. Theorists, on the other hand, develop
and refine physical equations to model the Universe’s behavior. They use high-end supercomputers
to run cosmological simulations, to replicate the conditions of the early universe. These simulations
help test the implications of various physical theories and require advanced computational techniques
and statistical analysis. One significant challenge in astrophysics is bridging the gap between observa-
tional data and theoretical models. Forward modeling techniques, which translate simulation outputs
into observable data, are crucial for effective collaboration. The advances of Machine Learning

∗Corresponding Author: Now at Intelligent Earth UKRI Centre for Doctoral Training in AI for the Environ-
ment, University of Oxford

2https://github.com/ufuk-cakir/rubix

Machine Learning and the Physical Sciences Workshop, NeurIPS 2024.

https://github.com/ufuk-cakir/rubix

models are hugely influenced by the improvements of hardware that has an architecture that works
well with the calculations performed in ML applications: the GPU. They are extremely well suited to
perform calculations in parallel, hence implementing a IFU forward model code that works on GPUs
is a major advantage to current state-of-the-art codes and will enable us to produce a sufficient number
of samples required for statistical analysis, which was so far the bottleneck for Machine Learning
(ML) applications. Additionally, with our JAX implementation we are able to compute gradients
needed to perform optimization in the context of ML and Simulation Based Inference. This paper
aims to bridge the gap between observers and theorists by introducing a forward modelling of mock
IFUs: RUBIX is written in JAX, runs natively parallel on multiple GPUs and leverages performance
improvements from just-in-time compilation using XLA.

2 Related Work

There are several codes that can forward model IFU data that are commonly used in astrophysics
research. One of the most popular codes is SimSpin [3], which is written in R and is a CPU only
package that takes in a simulation of a galaxy and produces mock IFU observations. The user can
freely choose any instrument configuration and spectral library to create mock observations. There
is extensive documentation and examples available, which makes the usage of the package very
user-friendly. Another code called GalCraft [10] generates mock IFU data cubes of the Milky Way
(MW). GalCraft uses the mock stellar catalog that is based on the analytical chemodynamical model
of [8]. The analytical model predicts the joint distribution of position, velocity, age, extinction,
photometric magnitude and the chemical abundances of stars in the MW, which is then used to
produce mock IFU data cubes. In [7], the authors emulated observation data from the MaNGA
survey [2] using IllustrisTNG data [6] to generate mock observations. Previously, [1] emulated 893
MaNGA observations using the RealSimIFS code from data of the TNG50 simulation [6, 5]. A
similar project of [4] produced a catalog of around 1000 unique mock IFU observation to mimic the
MaNGA primary sample – again using data from the TNG50 simulation. However, all current codes
are CPU only use and have no option of calculating the gradient of the forward modelling process
with respect to the input parameters - hence limiting their applicability within the context of ML.

3 RUBIX Codebase

The RUBIX pipeline is a modular and efficient framework for forward modeling IFU data from
cosmological simulations, leveraging the power of JAX for high-performance computing. RUBIX is
implemented as a linear pipeline, where each function sequentially transforms the input data, ensuring
that the framework remains extremely modular and easily extensible for future developments. RUBIX
utilizes multiple GPUs for parallel computation and significantly reduces processing time. The
Input Handler extracts and transforms relevant star and gas particle information from cosmological
simulation data into a unique data file, which is the input for the RUBIX pipeline. The first step in
the pipeline is to orientate the galaxy in the field of view, following the specifications provided in
the configuration file. Next, the particles are assigned to the IFU spaxels, accounting for telescope-
specific configurations. The key part is the spectra calculation. Each star spectrum is calculated as a
lookup from a simple stellar population (SSP) library. Then the spectra are Doppler shifted based
on the galaxy distance and line-of-sight velocity of each stellar particle. Additional resampling is
performed to match the wavelength grid of the observed telescope. Afterwards, the stellar spectra
in each spaxel are summed up. To simulate observational effects, we apply a point-spread function
(PSF) and line-spread function (LSF) convolution and add realistic noise. The entire pipeline is
configurable using JSON. Each pipeline run starts with a JSON or Python dictionary, where the user
chooses all the hyperparameters, i.e SSP library, galaxy distance and orientation, telescope, etc.

4 Results

Qualitative Analysis To verify the output, RUBIX is executed for different Subhalos from the
IllustrisTNG simulation using the IllustrisAPI. For a set of galaxies from the TNG50-1 simulation,
snapshot 99, mock observations are created with a MUSE instrument configured with fov=20 and a
Gaussian PSF and LSF. The Mastar_CB19_SLOG_1_5 SSP template [9] is employed to compute the
stellar spectra, and RUBIX is executed on eight NVIDIA A100 GPUs. The mock MUSE observations

2

SubhaloID 99-37
 M/M =0.64e10, z=0.02

5000 6000 7000 8000 9000
[Å]

0

1

2

3

Fl
ux

 (e
rg

/s
/c

m
2)

1e 18
SubhaloID 99-63874

 M/M =12.31e10, z=0.02

5000 6000 7000 8000 9000
[Å]

0.5

1.0

1.5

2.0

Fl
ux

 (e
rg

/s
/c

m
2)

1e 17

Figure 1: MUSE mock observations – for different Subhalos, the total flux in each pixel is shown as
an image representation on the left. On the right, the spectra of three different spaxels are plotted.

are illustrated in Figure 1. The galaxies were chosen to have an increasing mass, with a dwarf galaxy
on the left and a massive spherical galaxies on the right. For each galaxy, an image representation is
provided on the left, where the total flux in each spaxel is summed to produce a two-dimensional
array. The right column presents the spectra (in units of erg/s/cm²) for three different spaxels with
increasing distance from the galactic center. Spectra from the center of the galaxy exhibit higher
flux compared to those from the outskirts, which is expected due to the higher density of stars in the
galaxy’s center. The shapes of the spectra differ significantly; spectra from the outskirts tend to be
flatter. In general we can observe that RUBIX can reproduce the trends that we expect.

Galcraft[CPU] Rubix[CPU] Rubix[GPU]

101

102

103

Co
m

pu
te

 T
im

e
(s

ec
on

ds
)

5400.00 s

123.57 s
43.70x faster

8.58 s
629.37x faster

Comparison of Compute Speed: Rubix vs Galcraft

Figure 2: Speed comparison – the execution time
of different codes are compared. Note that the y-
axis is logarithmic.

Speed comparison The primary objective of
this paper is to highlight the methodological
improvements RUBIX provides for the forward
modeling process. In Figure 2, the compute
times of different codes are compared. Accord-
ing to [10], the authors state that "for a typical
MUSE FoV containing 6 · 106 particles, the exe-
cution time spent with a 24-core CPU (2.50GHz)
is 1.4 hours." This result serves as a benchmark
to contextualize the execution time of RUBIX.
A galaxy with a comparable number of parti-
cles (6 · 106) is forward modeled both on the
CPU and GPU using RUBIX. Running RUBIX on
a 24-core CPU (AMD Epyc 7452, 2.35 GHz)
takes 123.57 seconds, representing a 43.7-fold
improvement over the Galcraft code. When the
mock observation is computed on a single NVIDIA A-100 GPU, the execution time is reduced to
8.58 seconds, which is 600 times faster than Galcraft and 14.4 times faster than the same RUBIX code
executed on the CPU. Despite the clear performance improvements, we should take the benchmark
comparisons with caution, because we use different hardware configurations. GPUs and CPUs
have different architecture and GalCraft does not share the exact same methodology. Despite these
differences, the comparison still offers a valuable general trend. One significant reason for RUBIX’s
superior speed is its efficient implementation. In RUBIX, instead of naively looping over the particles,
every function is vectorized using vmap. This approach leverages XLA to fuse operations together,
resulting in substantial speed improvements.

Strong Scaling In Figure 3(a), the average runtime is plotted against the number of particles.
At each number of particles, the runtime is measured five times to get some statistics. The red
shaded area represents the ±1σ range, indicating the variability in the runtime measurements. One
can observe that as the number of particles increases, the average runtime also increases, but not
linearly. This indicates that RUBIX does not have perfect strong scaling, which may be caused by the
communication overhead between the GPUs.

Weak Scaling To evaluate how compute time scales with the number of GPUs, RUBIX is initially
run with 10,000 particles on a single GPU, and the runtime is measured. Next, the number of particles
is doubled, and the code is executed on two GPUs, continuing this process until the maximum number

3

0 20000 40000 60000 80000 100000
Number of Particles

5.0

5.5

6.0

6.5

7.0

Av
er

ag
e

Ru
nt

im
e

(s
ec

on
ds

)

Average Runtime Scaling with Number of Particles
Average Runtime
±1 Range

(a) Strong Scaling

1 2 3 4 5 6 7 8
Number of GPUs

5

6

7

8

9

10

Av
er

ag
e

Ru
nt

im
e

(s
ec

on
ds

)

Average Runtime Scaling with Number of GPUs (±1)
Average Runtime (Not Batched, 10k)
Average Runtime (Batched, 10k)
Average Runtime (Batched, 40k)
±1 Range (Not Batched,10k)
±1 Range (Batched, 10k)
±1 Range (Batched, 40k)

(b) Weak Scaling

1 2 3 4 5 6 7 8
Number of GPUs

0.5

0.6

0.7

0.8

0.9

1.0

Ef
fic

ie
nc

y

Scaling Efficiency with Number of GPUs

Scaling Efficiency
Scaling Efficiency (Batched, 40k)
Scaling Efficiency (Batched, 10k)

(c) Scaling Efficiency

Figure 3: Scaling plots – (a) Strong Scaling: Increasing particle size, while keeping number of
GPUs fixed (8 NVIDIA A100 GPUs). (b) Average runtime of different RUBIX runs, where we
proportionally increase particle size and number of available GPUs, such that the workload per GPU
remains constant. (c) Scaling efficiency calculated as the ratio of the runtime with one GPU to the
runtime with multiple GPUs.

of GPUs is reached, which in this case is eight NVIDIA A100 GPUs. In Figure 3(b), the average
runtime of different RUBIX runs is measured. Each run is repeated 5 times to get some statistics, and
the 1σ area is shaded in the background (blue: starts with 10,000 particles; green: split data into
four batches on each GPU; orange: starts with 40,000 particles and batching). Ideally, in a best-case
scenario, the compute time should remain constant as both the workload (number of particles) and
the compute resources (number of GPUs) increase proportionally. This would demonstrate perfect
scaling. From Figure 3(b) we can clearly see that the scaling is not perfect. The runtime increases
slowly with the number of GPUs, indicating that the computational work is not distributed equally
between the GPUs or that communication overheads are still large in RUBIX.

Scaling Efficiency To make this more quantitatively, we can measure the scaling efficiency as:
Scaling Efficiency = T1

TN
where T1 is the runtime with one GPU and TN is the runtime with N

GPUs. Ideally, this scaling efficiency should be close to one. In Figure 3(c) we clearly see that
the scaling efficiency decreases with increasing number of GPUs, which means that the scaling is
not optimal. One major factor is the communication overhead between GPUs, which can become
significant as more GPUs are added. Additionally, the efficiency of load balancing can decrease
with more GPUs. Furthermore, the complexity of managing more GPUs can introduce inefficiencies
in the parallelization process, such as increased latency in coordinating tasks and distributing data
evenly among the GPUs. This indicates that RUBIX is not yet fully optimized and requires further
improvements. One significant bottleneck might be the current implementation of pmap and jit. In
the current version of RUBIX, only the datacube calculation inside the pipeline is parallelized across
the GPUs using pmap. However, during the pipeline assembly, all the functions are concatenated, and
the final function is just-in-time compiled using jit. There is a known issue in JAX warning users
that using jit on a pmap-function can lead to inefficient data movement, as it essentially collects all
data onto a single device. This issue is discussed in detail on the official JAX GitHub page3.

5 Conclusions and Limitations

RUBIX represents a significant leap forward in computational efficiency and flexibility for modeling
IFU observations from cosmological hydrodynamical simulations. Its ability to rapidly process large-
scale simulations and its potential for future enhancements makes it a powerful tool for astrophysical
research. The combination of high performance and open-source accessibility underscores the
contribution of RUBIX to the field, facilitating innovation and collaboration within the scientific
community. Despite its impressive performance, there remains potential for further optimization, i.e.
further profiling is required. Apart from speed improvements, there are additional features that will
be implemented into RUBIX. Some of those include:

• Gas Modeling – Incorporating detailed models for interstellar gas will allow RUBIX to
simulate and analyze gas emission lines.

3https://github.com/google/jax/issues/2926

4

https://github.com/google/jax/issues/2926

• Dust Modeling – Adding support for dust attenuation models will provide more realistic
mock observations, that should closer relate to real observations.

• Radiative Transfer – Implementing advanced radiative transfer models will enhance the
precision of the RUBIX simulations. This will allow for a more realistic representation of
how light propagates through various media. However, this needs to be implemented in pure
JAX, which can be a quite challenging task.

With these additional features RUBIX will be ideally suited to tackle key scientific machine learning
tasks in astrophysics, such as performing SBI inference of fundamental galaxy parameters with high-
dimensional complex observational data, perform Bayesian model comparison, do gradient based
optimization tasks on the forward modelling pipeline and incorporate the differentiable forward model
RUBIX into machine learning architectures to train them end-to-end, e.g. build hybrid NN encoder-
physics-based-decoder architectures. As such, we think that RUBIX provides the astrophysical
community with a unique, versatile and new methodological approach to perform downstream
scientific tasks.

Broader impact statement

The authors are not aware of any immediate ethical or societal implications of this work. This work
purely aims to aid scientific research and proposes a method of using a pipeline of forward modelling
IFU data cubes to learn about galaxy formation and evolution.

Acknowledgments and Disclosure of Funding

The authors thank the Scientific Software Center at Heidelberg University for the support. This work
is funded by the Carl-Zeiss-Stiftung through the NEXUS programm.

References
[1] Connor Bottrell and Maan H Hani. Realistic synthetic integral field spectroscopy with realsim-

ifs. Monthly Notices of the Royal Astronomical Society, 514(2):2821–2838, June 2022.

[2] Kevin Bundy, Matthew A. Bershady, David R. Law, Renbin Yan, Niv Drory, Nicholas MacDon-
ald, David A. Wake, Brian Cherinka, José R. Sánchez-Gallego, Anne-Marie Weijmans, Daniel
Thomas, Christy Tremonti, Karen Masters, Lodovico Coccato, Aleksandar M. Diamond-Stanic,
Alfonso Aragón-Salamanca, Vladimir Avila-Reese, Carles Badenes, Jésus Falcón-Barroso,
Francesco Belfiore, Dmitry Bizyaev, Guillermo A. Blanc, Joss Bland-Hawthorn, Michael R.
Blanton, Joel R. Brownstein, Nell Byler, Michele Cappellari, Charlie Conroy, Aaron A. Dutton,
Eric Emsellem, James Etherington, Peter M. Frinchaboy, Hai Fu, James E. Gunn, Paul Hard-
ing, Evelyn J. Johnston, Guinevere Kauffmann, Karen Kinemuchi, Mark A. Klaene, Johan H.
Knapen, Alexie Leauthaud, Cheng Li, Lihwai Lin, Roberto Maiolino, Viktor Malanushenko,
Elena Malanushenko, Shude Mao, Claudia Maraston, Richard M. McDermid, Michael R. Mer-
rifield, Robert C. Nichol, Daniel Oravetz, Kaike Pan, John K. Parejko, Sebastian F. Sanchez,
David Schlegel, Audrey Simmons, Oliver Steele, Matthias Steinmetz, Karun Thanjavur, Ben-
jamin A. Thompson, Jeremy L. Tinker, Remco C. E. van den Bosch, Kyle B. Westfall, David
Wilkinson, Shelley Wright, Ting Xiao, and Kai Zhang. Overview of the SDSS-IV MaNGA
Survey: Mapping nearby Galaxies at Apache Point Observatory. , 798(1):7, January 2015.

[3] Katherine Harborne. Simspin: Kinematic analysis of simulated galaxies, 2023. Publications of
the Astronomical Society of Australia, Volume 40, article id. e048, Oct 2023.

[4] Lorenza Nanni, Daniel Thomas, James Trayford, Claudia Maraston, Justus Neumann, David R
Law, Lewis Hill, Annalisa Pillepich, Renbin Yan, Yanping Chen, and Dan Lazarz. iMaNGA:
mock MaNGA galaxies based on IllustrisTNG and MaStar SSPs – I. Construction and analysis
of the mock data cubes. Monthly Notices of the Royal Astronomical Society, 515(1):320–338,
06 2022.

[5] Dylan Nelson, Annalisa Pillepich, Volker Springel, Rüdiger Pakmor, Rainer Weinberger, Shy
Genel, Paul Torrey, Mark Vogelsberger, Federico Marinacci, and Lars Hernquist. First results

5

from the tng50 simulation: galactic outflows driven by supernovae and black hole feedback.
Monthly Notices of the Royal Astronomical Society, 490(3):3234–3261, August 2019.

[6] Annalisa Pillepich, Dylan Nelson, Volker Springel, Rüdiger Pakmor, Paul Torrey, Rainer
Weinberger, Mark Vogelsberger, Federico Marinacci, Shy Genel, Arjen van der Wel, and Lars
Hernquist. First results from the tng50 simulation: the evolution of stellar and gaseous discs
across cosmic time. Monthly Notices of the Royal Astronomical Society, 490(3):3196–3233,
September 2019.

[7] Regina Sarmiento, Marc Huertas-Company, Johan H. Knapen, Héctor Ibarra-Medel, Annalisa
Pillepich, Sebastián F. Sánchez, and Alina Boecker. Mangia: 10 000 mock galaxies for stellar
population analysis. Astronomy amp; Astrophysics, 673:A23, April 2023.

[8] Sanjib Sharma, Michael R Hayden, and Joss Bland-Hawthorn. Chemical enrichment and radial
migration in the Galactic disc – the origin of the [Fe] double sequence. Monthly Notices of the
Royal Astronomical Society, 507(4):5882–5901, 07 2021.

[9] S. F. Sánchez, J. K. Barrera-Ballesteros, E. Lacerda, A. Mejía-Narvaez, A. Camps-Fariña,
Gustavo Bruzual, C. Espinosa-Ponce, A. Rodríguez-Puebla, A. R. Calette, H. Ibarra-Medel,
V. Avila-Reese, H. Hernandez-Toledo, M. A. Bershady, M. Cano-Diaz, and A. M. Munguia-
Cordova. Sdss-iv manga: pypipe3d analysis release for 10,000 galaxies. The Astrophysical
Journal Supplement Series, 262(2):36, sep 2022.

[10] Zixian Wang, Michael R. Hayden, Sanjib Sharma, Jesse van de Sande, Joss Bland-Hawthorn,
Sam Vaughan, Marie Martig, and Francesca Pinna. The milky way in context: Building an
integral-field spectrograph data cube of the galaxy, 2023.

A Appendix / supplemental material

6

	Motivation
	Related Work
	RUBIX Codebase
	Results
	Conclusions and Limitations
	Appendix / supplemental material

