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Abstract

We present LensPINN, a Physics-Informed Neural Network architecture for study-
ing dark matter through strong gravitational lensing images. Our approach inte-
grates the gravitational lensing equation into the model, combining the capabilities
of Vision Transformer (ViT) and CNN frameworks. The architecture incorporates
the lensing equation to perform lensing inversion for the reconstruction of the
source galaxy. The deflection angle due to gravitational lensing is learned by the
Vision Transformer Encoder, and the information from the source image is then
passed through the architecture to enhance model learning, leading to improved
performance in tasks related to strong gravitational lensing and dark matter local-
ization. In this paper, we focus on a classification task that distinguishes between
simulations of different dark matter models. We compare the performance of our
model, LensPINN, with previous state-of-the-art models and other leading architec-
tures. We propose two versions of the LensPINN model: LensPINN_small, which
is highly efficient, having only half the number of parameters while performing on
par with all other models, and LensPINN_large, which has the same number of
parameters as existing models but surpasses all of them across various metrics.

1 Introduction

Despite over a century of research, our understanding of the fundamental nature of dark matter
remains as elusive as it was at the time of its discovery. Numerous experimental efforts have sought to
detect leading dark matter candidates, yet none have yielded definitive results to date [[1} 2} 13} 14} 15} 6.
While much of the search has focused on potential interactions between dark matter and the Standard
Model, another promising approach is to explore its gravitational effects. A particularly active area
of research involves using strong galaxy-galaxy lensing data to study and constrain dark matter
properties. The sensitivity of extended lensing arcs to small perturbations in the lensing potential,
caused by substructure in the main halo, offers a unique opportunity for probing dark matter. Studies
have demonstrated that differences in the distribution and morphology of these substructures can help
distinguish between different dark matter models [[7, 18, 9 [10L [1 1}, 12}, [13]]. However, the task is far
from simple. The complexity of the problem, especially when dealing with sub-dominant lensing
signals, makes extracting meaningful information particularly challenging.
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The inherent challenges of working with lensing data have led to extensive exploration of machine
learning algorithms in this field. Currently, only a limited number of high-quality lensing datasets are
available for training purposes. Fortunately, upcoming initiatives like the Vera Rubin Observatory
(VRO) [14] and Euclid [[15] are expected to generate thousands of images, thereby increasing the
demand for more advanced analytical methods. In the meantime, simulations have become essential
for investigating the integration of machine learning with strong lensing studies. Numerous research
efforts have demonstrated that machine learning holds significant potential for extracting dark matter
information from lensing data, as evidenced by studies such as [16,[17, (18119, 120]. Specifically, these
investigations have consistently found that convolutional neural networks (CNNs) are particularly
well-suited for strong lensing applications. This suitability is unsurprising because CNNs possess
two key attributes: 1) they exploit correlations within image data, and 2) they exhibit translation
invariance. A major advantage of CNNs is their ability to automatically filter out irrelevant or
redundant "degrees of freedom" due to their inherent translational invariance. Moreover, incorporating
known redundancies from a dataset directly into the network architecture has been shown to enhance
model performance, as demonstrated by the use of equivariant neural networks for domain adaptation
in simulated strong lensing data [21].In addition the Vision Transformers (ViT)[22]] utilizes the
self-attention mechanism to capture long-range dependencies between pixels, making them excellent
at recognizing global patterns across the entire image.

Along similar lines, we have seen the emergence of integrating physics into neural network architec-
tures, leading to the development of Physics-Informed Neural Networks (PINNs). PINNs incorporate
essential physical information into the network, improving its learning capabilities. In the context
of dark matter morphology, PINNs have been applied, such as in the Lensformer [23]]. In this work,
we propose a Physics-Informed Neural Network called LensPINN, which leverages the strengths
of both the self-attention mechanism of Vision Transformers (ViTs) and CNNs. The gravitational
lensing equation [24] is directly embedded into its architecture. To demonstrate LensPINN’s superior
performance, we benchmarked its ability to classify mock Hubble observations of galaxy-galaxy
strong lensing across different realizations of dark matter.

2 Dataset

To evaluate our proposed architecture, we simulate galaxy-galaxy strong lensing data resembling
observations from an HST-like survey. These datasets are generated using the publicly available
code lenstronomy[25], producing 64 x 64 pixel images, each in a single channel. The background
galaxies, which are lensed in our simulations, are modeled using a Sersic light profile. We create
three distinct classes of dark matter models.

The first model represents the standard cold dark matter (CDM) scenario, where the main dark
matter halo is modeled with a spherical isothermal profile and includes subhalos drawn from a
standard subhalo mass distribution (refer to [[16] for details). The second model simulates the lensing
signature of very light axion dark matter, with a particle mass of approximately 10~22 eV. In this
case, substructure formation is significantly suppressed, and the primary observable feature arises
from topological defects in the halo, manifesting as vortices [[L6]. The third model is a dark matter
scenario devoid of any substructure. While not realistic, as observational data clearly rule it out, it
serves as a useful comparison against the other substructure classes in simulations.

In total, we generated 3,000 simulations per class (axion, cold dark matter, no substructure), with an
80:20 train-test split applied across the three dark matter models.

3 Preprocessing

We have applied a physics-informed preprocessing technique to the image:
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The I"% is used for contrast enhancement highlighting faint structures. The logarithm function is
applied to compress and filter the dynamic range of intensities, allowing subtle variations to be more
noticeable. Squaring is then used to ensure all the values are positive, amplifying intensity differences.

preprocessed image =




Figure 1: LensPINN Architecture.

Double differentiation is performed to identify sharp changes in intensity(edge detection). Finally,
normalization is done using the tanh function, improving model convergence and stability.

4 LensPINN Architecture

The proposed architecture follows an encoder-decoder framework. The encoder uses a Vision
Transformer architecture to encode the angular deflection and applies the gravitational lensing
equation for lensing inversion, thereby reconstructing the source image. The decoder, which uses
Convolutional Neural Networks (CNN), takes the reconstructed source image, the original image,
and the preprocessed image as inputs. By providing the decoder with these three inputs, we aim to
enhance the model’s ability to make informed decisions.

4.1 Physics Informed Encoder

The encoder section of the model uses the Vision Transformer (ViT)[22] architecture. It utilizes
the gravitational lensing equation for reconstructing the source galaxy image (refer to [24] for
detalls) In the Inverse Lens Layer (see Fig.[I]), we apply the lens equation in its dimensionless
form: 95 = 91 - a(@;)[26] Here, 05 = (w5, ys) denotes the dimensionless source position in the

source plane, corresponding to the source galaxy, while 0; = (x4, y;) represents the dimensionless
image position in the image plane, corresponding to the observed image.The term &(x;,y;) =
(o (@i, yi), (24, yi)) represents the deflection angle. The deflection angle, @(6), depends on the
mass distribution of the lens and is expressed as the gradient of the gravitational potential produced
by the lens: @(f;) = V)(67) where 1(f;) represents the gravitational potential, which includes
contributions from both the lensing galaxy and potential dark matter. For a singular isothermal sphere
(SIS) model, the deflection angle

)
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is directly proportional to the Einstein radius 6z and is directed radially towards the lens. The lens
equation then becomes

a(f) =0p—

0
6]

where [ is the source position and 6 is the observed position[24]](after lensing effect). The process
begins by encoding the Einstein Radius using the ViT, which is then utilized to determine the source
coordinates via the lensing equation. If the source coordinates fall outside the grid of the source plane,
the grid is expanded to accommodate the magnification effects of strong gravitational lensing. When
multiple points on the image plane map to the same point on the source plane—commonly observed
in strong gravitational lensing ( formation of multiple images occurs due to the strong gravitational
field of the lensing galaxy)—pixel values are averaged to manage this overlap effectively. At the end,
after establishing the relationship between the source and observed image coordinates, we fill in the
pixel values on the source plane, resulting in the reconstructed source image.

B=0-0g



Table 1: Performance of Different Models (Parameters in millions; Best in bold, 2nd best underlined)

Model Name Parameters(M) Accuracy Micro F1 Score ROC AUC Score
No Subs. CDM Axion
ResNet18 11.17 0.818 0.817 0.97 0.85 0.95
ViT 13.72 0.863 0.864 0.99 0.66 0.96
CaiT 13.76 0.878 0.871 0.99 0.64 0.96
ViTSD 13.73 0.867 0.868 1.00 0.66 0.97
Lensformer 15.7 0.957 0.959 1.00 0.99 0.99
LensPINN_small 7.17 0.956 0.957 1.00 0.99 0.99
LensPINN_large 14.56 0.996 0.996 1.00 1.00 1.00
—— LensPINN large LensPINN _small —— Lensformer —— ResNet18 — ViT —— CaiT VitSD
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Figure 2: Model Performance Metrics. The left plot shows Micro F1 score vs epochs, the middle plot
shows training loss vs epochs and the right panel displays the Micro-Averaged ROC-AUC curves for
various models.

4.2 Decoder

The decoder section of the model consists of two Convolutional Neural Networks (CNNs), which
excel at local feature extraction. The goal is for the model to learn from the differences between the
source image and the observed lensed image, helping it identify the factors causing these differences,
specifically the lensing galaxy and its dark matter substructure. The first CNN extracts features from
the source and lensed images, while the second CNN performs feature extraction on the preprocessed
image. For LensPINN_small, we used MobileNetv3[27] as the CNN, and for LensPINN_large,
we used EfficientNetBO[28]]. We then obtain three feature vectors: one for the source image, one for
the lensed image, and one for the preprocessed image. The difference between the features of the
source and lensed images is computed and concatenated with the features of the preprocessed image.
This combined feature vector is then passed through fully connected layers for classification.

S Experiments

We conducted a comprehensive study comparing various models, including Convolutional Neural
Networks (CNNs) and Transformer models such as the Vision Transformer (ViT) [22], CaiT [29],
ViTSD [30], ResNet18 [31], and Lensformer(a PINN) [23]. All models had the same number of
parameters (around 14 million). They were fine-tuned and trained for 50 epochs, allowing the loss
curve to converge and to avoid overfitting. We used the AdamW optimizer with a learning rate of
le-4. The evaluation metrics were the micro F1 and ROC AUC scores. Both LensPINN_small and
LensPINN_large outperformed the others, with LensPINN_small achieving a 0.957 F1 score and
LensPINN_large scoring 0.996. LensPINN_small performed on par with the others but had half the
number of parameters. Both LensPINN_small and LensPINN_large also converged significantly
faster (see Fig[3) than any other model. For a detailed comparison of results, see Table[I] These
results clearly demonstrate that integrating physics into the model enhances its learning ability,
leading to quicker convergence (see Fig. [3)) and superior performance.
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Figure 3: GradCAM visualization of a CNN model trained on lensing images, with the final image
showing the GradCAM overlay on the preprocessed image.

6 Ablation Study

Model Training Data Micro F1-Score
MobileNet Raw Lensing Image 0.750
MobileNet Physics-Informed Preprocessing 0.970
LensPINN_small | Physics-Informed Preprocessing + Raw Lensing Image 0.952
EfficientNet Raw Lensing Image 0.850
EfficientNet Physics-Informed Preprocessing 0.980
LensPINN_large | Physics-Informed Preprocessing + Raw Lensing Image 0.997

Table 2: Comparison of Model Performance over preprocessed vs not preprocessed dataset

6.1 Importance of Preprocessing

The preprocessed images highlight regions that assist the model in making better decisions. This is
evident from the fact that when training a CNN solely on the original images, the Grad-CAM maps
reveal that the areas the model focuses on are aligned with those emphasized in the preprocessed
images. This suggests that the preprocessing highlights key regions that the model would likely focus
on even without any physics-based information. Therefore, the preprocessing significantly aids the
model in making more informed decisions.

6.2 Importance of PINN

The table 2] shows that the CNN trained on preprocessed images performs better than those trained
solely on the min-max scaled raw lensing images, and Lens_PINN large outperforms all of them.
This can be attributed to the fact that the decoder part of LensPINN receives context from both
the lensing image and the preprocessed image, as well as the source image. However, MobileNet
outperforms LensPINN_small, which may be due to the fact that in the decoder part, a single CNN
(MobileNet) is tasked with extracting feature maps from both the source and lensing images using the
same CNN module. This setup may be suboptimal, as MobileNet’s simpler architecture struggles to
adapt to the diverse features of both the source and lensing images simultaneously. When MobileNet
focuses solely on the preprocessed image, a more uniform and simplified representation, it performs
better. On the other hand, in LensPINN_large, which uses EfficientNet for feature extraction, which
handles feature representations more effectively than MobileNet, which is why LensPINN_large
outperforms LensPINN_small and all other models.

7 Result and Discussion

The key takeaway from our experiments is that the LensPINN model not only converges rapidly but
also demonstrates superior performance, despite having half the number of parameters compared
to other models (see Table. [I). This improvement can be attributed to the incorporation of physics
information into the model, which enhances its decision-making abilities. The LensPINN’s ability to
learn from the difference between the source and observed images is crucial to its success.
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