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Abstract

The discovery of novel superconducting materials is a longstanding challenge
in materials science, with a wealth of potential for applications in energy, trans-
portation, and computing. Recent advances in artificial intelligence (AI) have
enabled expediting the search for new materials by efficiently utilizing vast mate-
rials databases. In this study, we developed an approach based on deep learning
(DL) to predict new superconducting materials. We have synthesized a compound
derived from our DL network and confirmed its superconducting properties in
agreement with our prediction. Our approach is also compared to previous work
based on random forests (RFs). In particular, RFs require knowledge of the chemi-
cal properties of the compound, while our neural net inputs depend solely on the
chemical composition. We further discuss the existing limitations and challenges
associated with using AI to predict and discover new superconductors, along with
potential future research directions.

1 Introduction

Superconductivity is a phenomenon characterized by zero electrical resistivity and the Meissner effect
– the diamagnetic expulsion of of magnetic fields from the bulk of the sample, and is microscopically
attributed to the formation of Cooper pairs, making it an ideal system for the study of quantum
entanglement [2, 14, 3]. The search for new superconducting materials has been a long-standing
challenge in materials science with potential applications in energy, transportation, and computing
[26, 35, 12]. Traditional methods of discovering new superconductors involve extensive experimental
trial and error, which can be time-consuming and expensive. In recent years, researchers have explored
the use of machine learning algorithms to accelerate the discovery of new materials [1, 21, 16, 24].

Modern machine learning techniques, such as deep learning [19], combined with genetic algorithms
[10], can efficiently screen large databases of materials properties and predict the properties of
potential new materials [30, 29, 34]. Beyond identifying potential materials, machine learning has
also emerged as a tool for providing researchers with a deeper understanding of certain properties. For
example, machine learning was used to develop simple models that explain the electronic structures
of half-Heusler phases for potential thermoelectric properties [11], or direct the search for compounds
with high hardness [23] by predicting the elastic moduli as a proxy [22], and so on.
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In this work, we evaluated the effectiveness of deep learning methods to classify materials into
superconductor/non-superconductors and also to predict Tc when it is a superconductor. Our tools
were applied to predict superconducting properties of hypothetical materials in sigma phases and
compared to experimental findings. On this very special and small set of materials, the performance
of both the random forest method and our deep learning networks are mixed. Still, we believe that
we are at the beginning of the integration of AI and experimental synthesis, and this integration has
immense potential for expediting the discovery of new superconductors and facilitating a deeper
understanding of the underlying superconductivity phenomena. Previous works have used random
forest regression [33], gradient boosting [15], or, in the realm of DNN (deep neural networks), a
combination of a CNN and an LSTM for Tc prediction [20], a neural network for Tc prediction
without classification [18], and a network with Deep Set architecture for classification [28]. Recently,
superconductor design through gradient optimization [13] has been used. Our approach differs from
these, as we present below. We also find superior performance to regression algorithms trained with
chemical features. In the present work, we rely solely on the chemical formula of the compound.

2 Deep Learning Superconductivity Prediction

2.1 Data and Preprocessing

The superconducting data for alloys were retrieved from database for superconducting materials,
SuperCon [25]. The data tabulates the experimental results of measurements of superconductivity for
16,414 compounds. Each row indicates the elements in the compound and their respective percentages
(the input), as well as the measured Tc value (the output), where Tc > 0 indicates that the compound
is superconducting.

For each data point, a data vector of length 120 is generated with the index representing the atomic
number of elements and its corresponding percentage being the entry for that index. These generate
16,414 sparse 120-dimensional vectors. This will be the input of our fully connected network. In
principle, it may be useful to incorporate some information about the relative position of elements in
the periodic table. Several works [18, 13] break up the periodic table into multiple rectangles and
input the chemical compound as multiple images which is then processed by a convolutional network
(CNN). We will reshape the 120 dimensional vector into a single 10× 12 ‘image’. This approach is
harder to justify, a priori, but, as we will see, our CNN seems to have slightly better performance in
some cases, compared to the fully-connected network. We speculate that it benefits from bringing
together chemicallly similar elements.

The output comprises two components: classification ground truth, represented by a single binary
value of 0 or 1, indicating the presence or absence of superconductivity. Thus, the two classes
correspond to non-superconducting compounds (0) and superconducting compounds (1). The other
component is the measured Tc value.

2.2 Architecture

Given the nature of the dataset, we decided to treat the problem as a combination of classification and
regression tasks. In other words, we construct deep neural nets (DNNs) that can classify whether
a given compound is superconductive or not and predict the corresponding Tc value. The DNN
model comprises three components: the network backbone and two prediction branches: one for
classification and the other for Tc value. The architecture is schematically illustrated in Fig. 1,
left. We build two networks, one fully-connected, the other convolutional. For the details of the
architectures, please see Supplementary Materials. The DNN model is implemented using the
PyTorch [27] framework, which accepts network data in the 4-D tensor format of NCDHW (batch N,
channels C, depth D, height H, width W).

A word of justification for our choice of the branched architecture and on our planned method of
training. Since the two tasks, namely, the classification of superconducting nature and the regression
of Tc are related, it makes sense to train a set of shared latent variables as neurons in the initial
layers. Since the teaching signal from Tc is more specific than the signal from the class, we train
the shared part via the regression task. Since the classification task is conceptionally easier than the
regression task, we choose to allow some additional flexibility to the network, rather than restricting
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to it classifiers obtained by thresholding the output of a regression network, as in Refs. [33, 18] and
others.

Tc

Class.

Figure 1: Left: DNN structure with a shared backbone and two prediction branches, one for the
Tc value and the other for classification. We have used our DNN to predict a new superconductor
(see Sec. 3) from the σ family of alloys, and measured its resistivity as a function of temperature,
extracting Tc.

2.3 Training

The data set is divided into 2 portions: training (13132 entries) and testing dataset (3282 entries).
During the training process, the Mean Squared Error (MSE) is utilized to compute the loss error,
which is subsequently leveraged for the backpropagation calculation using the Adam optimizer
[17]. The training process is carried out in two stages. First, the Backbone and Tc prediction
branches are jointly trained, and the loss of the predicted Tc value versus the ground truth is used for
network backpropagation. Once the Tc Prediction results reach a satisfactory level, the parameters
of the Backbone and Tc Prediction branches are fixed. The training is then performed solely on the
Classification branch. Each branch was run for 5,000 epochs. This procedure was performed for both
architectures. The learning curves, showcasing performance in accuracy and MSE loss are plotted in
Fig. 2

After completing Stage1 and Stage2 training, the model is finalized for testing. The training process is
further optimized by using two-step learning rate decay. The initial learning rate is set to 0.0001, and
at 3000 epochs, it is decayed to 0.00001 to fine-tune the training parameters. The training results are
evaluated based on the backbone and Tc prediction branch training, and the Tc prediction difference
is calculated by averaging the mean absolute error (MAE) difference between the predicted and
ground-truth values [8]. A lower difference value indicates more accurate prediction results. Both
the loss and Tc prediction differences decrease with an increase in epoch count, and starting from

Figure 2: Performance against epochs of training for the CNN (convolutional neural network) and
FC (fully-connected neural network). See main text for details.
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the 2000th epoch, the loss and difference curve reach a plateau. However, at the 3000th epoch, with
a decay in the learning rate from 0.0001 to 0.00001, the loss and Tc prediction differences further
decrease, indicating that the learning rate decay indeed helps to improve the training process by
providing finer granularity control of parameter updating.

2.4 Results

Results and the performance of the classification branch is evaluated based on its accuracy in correctly
identifying if a compound exhibits superconductivity or not, as compared to the ground-truth. A
higher accuracy value indicates better performance in the classification task. The testing process
involves evaluating the performance of the trained model on a separate dataset known as the test
dataset, which is distinct from the data used during model training. The test dataset comprises a total
of 3282 entries. The final training and testing results with appropriate comparison to random forest
methods are listed in Table 1.

Table 1: The summary of classification and regression test results for various methods. RF= Random
Forest [33], FCNN= Fully-connected neural net, CNN= Convolutional Neural Net. The error in Tc

regression (Reg.) is defined as the mean of Tc(pred.)− Tc(actual).

Model Accuracy Precision Recall F1 Reg. [K] Class.

RF [33] 85% 1 85% 94% 90% 7.88 ± 0.52 NA 2

FCNN 83 ± 0.6 % 85 ± 0.7% 95 ± 0.4% 90% 4.497 ± 0.328 83.04 ± 0.6%
CNN 85 ± 0.3% 88 ± 0.4% 92 ± 0.3% 90% 3.208 ± 0.180 84.77 ± 0.3%

The SuperCon database [25] has 16,414 entries, 12,499 (≈ 76%) of which are known to be super-
conductors and the rest are considered non-superconducting. Note that a positive/negative weight
guessing random classifier could achieve a maximum of ≈ 76% accuracy by always going with the
majority class [4]. In this dataset, the majority class predictor would have 100% recall but ≈ 76%
precision. These baselines are to be compared with the classification performances of the machine
learning methods.

3 Experimental Studies

Superconductivity was observed in a few materials belonging to the σ-phase category [6], character-
ized by a high degree of disorder and the presence of multiple elements occupying the same Wyckoff
position. The occurrence of σ-phases is strongly dependent on the concentration and the type of
the constituent elements. Notably, superconductivity has been demonstrated in materials such as
Nb-Ru-Ge, Nb-Rh-Ge, and Nb-Rh-Si, which has stimulated further investigations into Re-based
materials with varying ternary systems to explore the their superconducting properties [5, 7].

We leveraged our chemical intuition and expertise, to narrow our search for new superconductors
to ternary compounds with formula unit Mo20X6Z4, with X=Re, Rh, Ru, Z=Ge, Si, as the 20-6-4
stoichiometry is most likely to form in the sigma phase. Then we use our DNN-based algorithm to
investigate the potential superconducting properties of these compounds. Our CNN predicted that
Mo4Re2Si is likely to exhibit superconductivity with a critical temperature (Tc) of approximately 6
K, while Mo4Re2Ge is also predicted to be a superconductor with Tc ∼ 5 K. The drop in resistivity
for the associated, fully stoichiometric compound of the 20− 6− 4 family, Mo20Re6Si4, is shown in
Fig. 1(right). Subsection A.4 provides further details of the experimental set up, synthesis, crystal
structure and additional measurements performed to confirm the 3D nature of the superconductivity.

Data leakage related issues are discussed in subsection A.3. For clarity, by starting with the loading
composition of 4-2-1 ratio, we get final products with around 20-6-4 ratio.

1 To match with our definition of accuracy, this value was extrapolated from Stanev et al. to the point
Tsep = 0.

2 Stanev et al. do not explicity train for classification, we do not present a direct comparison as it would be
fine-tuned by their value of Tsep.
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4 Conclusion

This work proposes a DNN-based superconductivity prediction model that uses 13132 data
points to achieve an accuracy of 84% on 3282 test data. This is a small dataset compared
to many cutting edge applications of DNNs. For instance, popular image classification algo-
rithms such as mobile-net and res-net that use ImageNet as a basis for training are trained on
1.2 million images to classify 1000 objects. The top-1 accuracy for ImageNet has moved into
90% plus territory only within the last few years (see https://paperswithcode.com/sota/
image-classification-on-imagenet). Our performance is comparable to previous work using
random forests, but does not require detailed atomic-level chemical information utilized by Stanev
et al. [33] while using random forests. Unlike Konno et al. [18] and Pereti et al. [28], our dataset
contains only real compounds extracted from SuperCon, without padding with fictitious entries for
increased sensitivity. Our data is further not restricted to the high-Tc regime as in Ref. [13], but
is composed of data for a wide range of superconducting temperatures. In classification we find
comparable performance relative to a more involved algorithm as in Ref. [28].

5 Limitations of This Study and Future Directions

We train our model on a relatively small dataset with an abundance of superconductors. To enhance
the prediction accuracy and robustness of the model, more training data, with appropriate materials
distribution, is required. More importantly, the input in our dataset only contains the chemical
composition of the material. One extension is to encode the neighborhood of elements in the periodic
table, as in the graph sometimes known as the “periodic spiral" [31]. The sigma phase experiments
indicate that all the methods have difficulties differentiating between elements in the same group.
Utilizing the crystal structure [32] and electronic structure can provide additional information to the
model to abstract during the training process. Also interesting is the use of symmetries for prediction
[36].

These augmentations of predictors could boost the model’s performance and make predictions in
real-world scenarios.
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A Appendix / supplemental material

A.1 Details of Architecture

The convolutional model uses both convolution and pooling with the later stages being fully connected.
The fully-connected model obviously uses all to all connections at every layer. The activation function
used for both network is ReLU. We provide the visualization of the networks using the Netron software
(https://netron.app/), based on the saved .onnx files.
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A.2 Detailed plots of network performance during training/testing

Below, we present more expansive plots of the training process for accuracy and MSE loss in the two
networks as a function of epoch.

A.3 Data leakage

We discuss the possible impact of data leakage [9] on our predictive power. Data leakage happens
when the training data contains some kind of information that will not be available when the model is
used for prediction or decision making. Such leakage has two main types:target leakage and train-test
contamination. Target leakage occurs when training predictors include data that will not be available
at the time to make new predictions. That is not relevant for us. As to test-train contamination, there
was nothing in our dataset of the form MoxReySiz.

If one broadens the definition and considers similar materials, our dataset indeed has materials which
share two of the three elements present in the target. While these materials, present in the dataset
could be similar, for example, some materials of the form MoxReyOz, superconductivity is dependent
on many subtle effects and is not easy to predict. In fact, different compositions of MoxReyOz have
different behavior. Also, while we are trying to predict new materials, we expect there are one or more
chemical composition-wise similar superconducting materials. Thus, for computationally accessible
new superconducting materials, some similarity in the data is expected.

A.4 Details of the experiment

Mo20Re6Si4 was synthesized successfully by arc melting method, and its crystal structure was con-
firmed to be tetragonal with lattice parameters a = b = 9.472(1) Å and c = 4.965(2) Å. The compound
belongs to the σ-phase, which has a large unit cell with 30 atoms and a general stoichiometry of
A20B10 shown in Figure 9a. In binary σ-phases, A and B atoms occupy different Wyckoff positions,
and in ternary σ-phases, the third element partially occupies some positions from A and/or B atoms.
Although further experiments are required to determine all mixing and site occupancies, assuming
the stoichiometry of Mo20Re6Si4 can be used in further physical properties analysis.

Figure 9b displays the temperature dependence of the zero-field-cooled (ZFC) and field-cooled (FC)
volume magnetic susceptibility measured under an applied magnetic field of 20 Oe. The transition to
the superconducting state is observed at Tc = 5.4 K and was determined as the point of intersection
between the steepest slope of χv and the extrapolation of the normal state susceptibility. This method
is consistent with previous studies. The ZFC volume magnetic susceptibility slightly exceeds 4πχv =
-1, which is the expected value for a perfect Meissner effect. insights into the magnetic properties of
the sample and are important for understanding the superconducting behavior of the material.

In order to gain a deeper understanding of the superconducting state of the material, we conducted
resistivity measurements. The temperature dependence of the resistivity is depicted in Figure 9c.
We observed a decrease in resistivity as the temperature increased, which is typical for metallic
behavior. However, the resistivity values were found to be high, likely due to the high level of disorder
present in the material. Notably, a sharp drop to zero resistivity was observed at a temperature of
approximately 6 K, which is indicative of the superconducting transition.

Finally, to establish the bulk nature of the observed superconductivity, we performed specific heat
measurements. The temperature dependence of C/T is presented in Figure 9d. We observed a
λ-shaped anomaly, which indicates the presence of a phase transition. To identify the specific heat
jump (∆C) and critical temperature Tc, we constructed an equal-area entropy plot (red lines in the
main panel of Figure 9d). The obtained Tc was determined to be 5.4 K, which is in agreement with
the magnetic susceptibility data.

A.5 Computational Resources

All networks were trained on a 2 NVIDIA GPU compute nodes managed by the SUN Grid engine,
on the Beowulf cluster, Rutgers university. 6 realization of each network were carried out, with the
dataset sizes for training enumerated in the main text.
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13132 training entries over 5000 epochs required 6 hours and 45 minutes for training for CNN
networks and 6 hours and 50 minutes for FC networks. Testing on existing models was completed in
45 seconds (∼ 3282 entries).
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Figure 3: The convolutional model, including (1) Backbone, (2) Tc Prediction branch and (3)
Classification branch.
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Figure 4: The fully-connected model.
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Figure 5: Fully-connected Model: Accuracy in classification during training with epoch.

Figure 6: Fully-connected Model: MSE loss in classification during training.
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Figure 7: Convolutional Model: Accuracy in classification during training with epoch.

Figure 8: Convolutional Model: MSE loss in classification during training with epoch.
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Figure 9: Phase identification and superconductivity properties of Mo20Re6Si4. (a) Powder X-ray
diffraction pattern of sigma phase Mo20Re6Si4; (b) Magnetic susceptibility of Mo20Re6Si4. (c)
Field-dependent resistivity of Mo20Re6Si4. (d) Heat capacity of Mo20Re6Si4.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer , , or .

• means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "" is generally preferable to "", it is perfectly acceptable to answer "" provided a proper
justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering "" or
"" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that
the true answer is often more nuanced, so please just use your best judgment and write a justification
to elaborate. All supporting evidence can appear either in the main paper or the supplemental material,
provided in appendix. If you answer to a question, in the justification please point to the section(s)
where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:

Justification: Our abstract and the introduction provide an an overview of our computational
and experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer:
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Justification: The limitations and possible ways overcome them are discussed in section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer:
Justification: This paper does not have any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:
Justification: The paper contains statements about both computational studies and physical
experiments. Even for the computational part, while sufficient information is given, it
will be hard to include it within the 4 page limit. Some more information is available in
supplementary materials. If deemed appropriate more information can be made available, if
the manuscript is accepted. Similar statements are valid for the physical experiments.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: Yes
Justification: Section 7 discusses data availability and points out the source dataset. We
provide the code for this submission in a freely accessible Github repository: https:
//github.com/danielkaplan137/TcMLPred.git
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:

Justification: See subsections 2.2, 2.3 and A.1 where most of these details are provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The results in table 1 provide error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: The computational resources are discussed subsection A.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer:
Justification: Since this is a primarily computational work in nature, supported by physical
experiments not involving human subjects, which might lead to discovery of new supercon-
ductors. This is mostly beneficial for humans if it comes to fruition. We do not think we
violate the concerns listed in the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer:
Justification: While there is some potential future benefits to humanity, the societal impacts
of this paper are somewhat limited in scope.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer:

Justification: We expect this work to be used within a limited scope: the initial exploration
of possible materials for synthesis. So, these safeguards are not quite appropriate for this
work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:

Justification: Open-source code and relevant authors are cited when comparing results.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: We are not generating any new asset right away.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer:
Justification: Our work does not involve crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:
Justification: We do not do any research with human subjects and therefore IRB approvals
are not relevant.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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