
LLM Enhanced Bayesian Optimization for Scientific
Applications like Fusion

Sahand Ghorbanpour†, Ricardo Luna Gutierrez†, Vineet Gundecha†, Desik Rengarajan,
Ashwin Ramesh Babu, Soumyendu Sarkar†∗

Hewlett Packard Enterprise

{sahand.ghorbanpour, rluna, vineet.gundecha, desik.rengarajan
ashwin.ramesh-babu, soumyendu.sarkar}@hpe.com

Abstract

Although Bayesian optimization (BO) is commonly used to optimize many sci-
entific and industrial experiments, it requires specialized acquisition functions
(AFs) to navigate exploration spaces efficiently for various application domains.
Moreover, traditional BO struggles to incorporate prior data from simulations or
previous experiments, resulting in lower sample efficiency. This paper explores
freely available LLMs, fine-tuned to generate Python code, to refine AFs while
learning from simulations and experiments. Our results show that this method
generates novel acquisition functions that outperform traditional BO AFs, such as
Expected Improvement (EI) and Upper Confidence Bound (UCB). We apply this
approach to inertial confinement fusion (ICF), a costly and complex problem in
which a laser pulse shape is optimized across multiple shots to maximize yield. We
demonstrate that this LLM-based technique outperforms classic AFs, such as EI
and UCB, in ICF optimization, leading to more efficient and effective optimization
and accelerating scientific innovation.
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Figure 1: LLM can refine acquisition functions in optimizing scientific experiments like inertial confinement
fusion. Diagram based on FunBO.
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1 Introduction

Experiments across various scientific domains are often prohibitively expensive due to their inherent
complexity, the need for specialized expertise, and the requirement for advanced equipment. In light
of these challenges, developing techniques that maximize experimental outcomes while ensuring
sample efficiency is critical. One such technique, Bayesian Optimization (BO), focuses on sample-
efficient optimization by combining a surrogate model with an acquisition function (AF) to guide
the efficient selection of new experiments. However, traditional BO approaches rely on generic AFs,
such as Expected Improvement (EI) or Upper Confidence Bound (UCB), or require handcrafted AFs,
which are often challenging to design, especially for complex problems. Furthermore, standard BO
methods typically fail to leverage data from previous experiments or simulations to tailor AFs to
specific problems.

Recent studies have demonstrated the potential of powerful models, such as Large Language Models
(LLMs), to discover novel AFs that enhance the effectiveness of BO across various domains (Aglietti
et al., 2024; Liu et al., 2024; Ramos et al., 2023; Yang et al., 2024). In this work, we investigate the
benefits of such approaches for optimizing complex functions. Specifically, we focus on FunBO
(Aglietti et al., 2024), an AF discovery method that harnesses the capabilities of LLMs and a limited
set of source functions—derived from prior experiments or simulations—to design innovative AFs.

To evaluate our approach, we use two widely recognized benchmark functions: the Goldstein-Price
and Branin functions. The Goldstein-Price function (Dixon, 1978) is a two-dimensional function
known for its challenging optimization landscape, featuring ridges, valleys, and multiple local minima.
Similarly, the Branin function (Branin, 1972) is a global optimization benchmark with a complex,
multimodal structure. Both functions are ideal for testing optimization algorithms as they challenge
the ability to navigate non-linear, multimodal, and non-separable problems effectively.

In addition to these benchmarks, we apply FunBO (Aglietti et al., 2024) to a real-world problem:
energy optimization in inertial confinement fusion (ICF). Fusion energy offers significant advantages
over fission, including minimal waste production and no risk of catastrophic meltdowns. ICF
achieves fusion conditions by using powerful lasers to compress fuel and initiate reactions (Bahrami
et al., 2019). However, the high costs and complexities of laser systems, along with the scarcity of
specialized facilities capable of conducting such experiments, severely limit practical experimentation.
This makes efficient optimization algorithms essential for accelerating progress in ICF research.

Unlike the FunBO approach, which employs Codey, a proprietary LLM-based code generation
solution built on PaLM 2 with an expensive API, our study emphasizes the use of smaller, open-
source models. These models, freely accessible on platforms like Hugging Face (Wolf et al., 2020),
make the methodology more accessible and adaptable to a broader range of researchers, ensuring
cost-effective and versatile solutions for scientific optimization challenges.

2 Background

Bayesian Optimization (BO) seeks the global optimum of a black-box objective function by using
a surrogate model, typically a Gaussian process, to iteratively select new points via an acquisition
function until a predefined budget is exhausted.

2.1 LLM for refining BO Acquisition Function

Designing AFs can use LLMs and a set of source functions F as an algorithm discovery problem
(Aglietti et al., 2024). For real-world problems such as ICF, this set F can be derived from simulations
or historical data from previous experiments.

Starting with an initial AF αinit defined in code, this method (Figure 1) iteratively prompts an LLM
to generate new AFs aimed at improving BO performance over a set of source (training) functions Fs.
At each step τ of the FunBO process, a prompt is created using two previously designed AFs stored
in a database (DB). If the DB is empty, as in the initial steps, only αinit is used in the prompt. Based
on this prompt, the LLM generates B new AFs ατ . These newly designed AFs are then evaluated
over Fs through N BO steps and are given a numeric score sατ

based on:
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def acquisition_function(x_points , predictive_mean , predictive_var , incumbent , beta =1.0):
z = (incumbent - predictive_mean) / np.sqrt(predictive_var)
predictive_std = np.sqrt(predictive_var)
vals = (incumbent - predictive_mean) * norm.cdf(z) + predictive_std * norm.pdf(z)
point = x_points[np.argmax(vals)]
return point

Figure 2: Initial AF used for the LLM method’s AF discovery process
.

def acquisition_function_ICF(x_points , predictive_meanpredictive_var , incumbent ,
beta =0.4):

z = (incumbent - predictive_mean) / np.sqrt(predictive_var)
predictive_std = np.sqrt(predictive_var)
vals = beta * predictive_std * stats.norm.pdf(z) + (incumbent - predictive_mean) \

* stats.norm.cdf(z)
point = x_points[np.argmax(vals)]
return point

Figure 3: AF discovered by the adapted LLM approach for the ICF task. The code shown was generated by the
LLM and formated to fit the paper width. We can see that the LLM is able to output AFs in correct Python code.

where fj ∈ Fs, y∗j is the true optimum of fj , xn=0
j is the input value at n = 0, x∗

j , ατ is the best
input value found with ατ , and Nατ

is the number of trials out of N that ατ took to achieve y∗j . If the
optimum value y∗j is not found, Nατ

is set equal to N . The first term in the scoring equation rewards
the acquisition function for finding values close to the optimum, while the second term rewards it for
achieving the optimum in the fewest possible steps Nατ

. The score sατ
is used to store the generated

AFs in the database (DB), and a population-based genetic algorithm uses these scores to determine
the pair of AFs to use for prompt generation, favoring those that are shorter and have higher scores.

This process is repeated until the time budget T is exhausted. From the higher-scoring AFs, the
method then selects the AF that performs the best on a set of validation functions Fv . If a validation
set is not available, Fs is used instead. An overview of the FunBO algorithm is shown in Algorithm
4. For our experiments, we use EI as αinit as shown in Figure 2

2.2 Inertial Confinement Fusion

Inertial Confinement Fusion (ICF) (Betti and Hurricane, 2016; Lees et al., 2021; Gopalaswamy et al.,
2019, 2024) seeks to achieve nuclear fusion by using high-energy lasers to compress a small fuel
pellet of deuterium and tritium to extreme temperatures and pressures. The goal is to fuse the nuclei,
thereby releasing significant energy with the potential for providing nearly limitless clean power.
The energy yield depends on the precise shaping and timing of the laser pulse, governed by five key
parameters. However, ICF experiments are costly and limited, with only tens of shots per year for a
research team, slowing progress. Sample-efficient optimization techniques are critical for accelerating
advancements in fusion research. Other optimization studies this paper draws ideas from include
(Gundecha et al., 2024; Gutierrez et al., 2024; Shmakov et al., 2023).

3 Experiments

We ran and assessed the performance of the AFs found by FunBO in the Branin and Goldstein-Price
synthetic functions (Surjano, 2024), and the task of ICF energy yield optimization. For ICF’s dataset
creation, we utilized the LOTUS library (Ejaz et al., 2024) to generate various laser pulse profiles
based on a custom parameterization. These parameters determined the laser power and timing,
which were then used as inputs for the LILAC simulator (Delettrez et al., 1987), a simulator for
laser-driven fusion physics. The chosen laser pulse shape significantly affects the experimental
results (energy yield), influencing both the compression of the fusion fuel and the development of
hydrodynamic instabilities (Williams et al., 2021). To develop a response surface reflecting different
entropy shapes, we varied 5 parameters related to the laser pulse. Using Latin hypercube sampling, we
generated 50,000 samples within the design constraints of the laser system. These pulse shapes were
tested with the LILAC simulator on a fixed fusion fuel target, and the resulting neutron yields were
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Algorithm 1 LLM to refine BO Acquisition Function 

1: Inputs: F s, Fv, DB, B, T 
2: Setup: Initialize .a,init ·, e, and DB with N DB islands. 
3: Assign ainit to each island. 
4: while T < T do 
5: Sample two AFs from DB and create prompt 
6: Get a batch of B AFs from the LLM. 
7: for each correct a,7 in the batch do 
8: Compute S aT (F s)-
9: end for 

10: Add correct a,7 to DB. 
11: Update step T == T + 1. 
12: end while 
13: Output: Return a in DB with score in the top 20th 

percentile for F s and highest score on Fv. 

Figure 4: Left: Algorithm of LLM to refine BO Acquisition Functions. Right: An example laser pulse shape
used in ICF experiments, controlled by 5 parameters. The parameters are adjusted during an optimization
campaign to maximize energy yield.

analyzed to construct a response surface based on these 5 parameters. Additionally, to create a diverse
evaluation, we generated two source tasks and one test task by modifying the simulator’s physics
models, specifically, the equation of state, which affects shock behavior in fusion fuel, thus changing
the response surfaces across different simulation versions. This discrepancy between training and
test tasks enables us to approximate the divergence observed between simulation and real-world
experiments in ICF.

Due to computational costs, we limited the FunBO’s steps T to 1000. The AFs discovered are shown
in Figure 3 for ICF, and in the Figures 6 and 7 in the Appendix for Branin and Goldstein-Price.

We used WizardCoder-Python-34B-V1.0 (Luo et al., 2023) as the base LLM for AF discovery, as it
is open-source and deployable. Despite its smaller size compared to proprietary models like PaLM,
WizardCoder effectively discovered performant AFs within the computational budget. By contrast,
Codestral-22B-v0.1 (Mistral AI, 2024) and Phind-CodeLlama-34B (Phind AI, 2024) struggled to
generate effective AFs within the defined steps T . This may highlight differences in task-specific
training or optimization capability among these models.

3.1 LLM driven Acquisition Function Performance
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Figure 5: Comparison between the AF discovered by LLM and EI. The LLM approach is able to achieve lower
regret in all 3 tasks. The shaded areas represent a ±1 standard error.

We compare the LLM approach with αinit (EI) and UCB to assess this method’s abilities to discover
new AFs that improve BO performance (Garnett, 2023). We run all experiments using 10 different
seeds and used 5 initial random samples to initialize the GP for all tasks. The results of this evaluation
are presented in Figure 5. The LLM approach demonstrates superior performance compared to the
classic BO baselines in all three tasks. These results show that even with smaller open-source models,
complex problems such as ICF can benefit from leveraging LLMs for AF discovery, opening up new
opportunities for research and development in applied AI for scientific domains.
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4 Conclusion

Our study shows that LLM-based methods can greatly improve experimental optimization in complex
scientific fields such as ICF. By enhancing performance and sample efficiency, these methods reduce
experimental costs, potentially accelerating fusion energy development, a key step toward sustainable
clean energy. The choice of the right LLM can significantly impact computational costs and the
number of required samples.

In contrast to FunBO’s original work, we use open-source LLM models for acquisition function
discovery, which makes the method more accessible and adaptable to a broader range of research
contexts for scientific optimization. Our experiment showed that a freely available 34B model
designed for code generation outperformed larger LLMs, requiring fewer samples to improve the
acquisition function. For some of the benchmark functions, it exceeded results from the FunBO paper,
which used the Codey model (PaLM family).

Future work will explore applications in ICF, transfer learning, and dynamic prompting for AF
discovery, using feedback from humans or LLMs. We aim to enhance the Funsearch evolutionary
algorithm to reduce sample sizes and explore new Bayesian optimization methods like Neural and
likelihood-free acquisition functions.
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A Acquisition Functions

The UCB AF used for eveluation is shown in Figure 8. The AFs discovered on the Branin and
Goldstein-Price are shown in Figure 6 and 7 respectively. The LLM is able to output the AFs in
standard Python code.

def acquisition_function_Branin(x_points , predictive_mean , predictive_var , incumbent ,
beta =1.0):

z = (incumbent - predictive_mean) / np.sqrt( predictive_var )
predictive_std = np.sqrt( predictive_var )
vals = beta * (incumbent - predictive_mean) * stats.norm.cdf(z) + predictive_std \

* stats.norm.pdf(z)
vals += np.random.normal(0, 0.01, size=vals.shape)
vals *= 1 / (predictive_std + 1e-5)
return x_points[np.argmax(vals)]

Figure 6: AF discovered by FunBO for the Branin function.

def acquisition_function_GS(x_points , predictive_meanpredictive_var , incumbent ,
beta =0.4):

z = (incumbent - predictive_mean) / np.sqrt( predictive_var )
predictive_std = np.sqrt( predictive_var )
vals = beta * (incumbent - predictive_mean) * stats.norm.cdf(z) + predictive_std \

* stats.norm.pdf(z)
vals += np.sqrt(predictive_var) * 0.1
vals += np.random.normal(0, 0.01, len(x_points )). reshape (-1,1)
return x_points[np.argmax(vals)]

Figure 7: AF discovered by FunBO for the Goldstein-Price function.

def acquisition_function_UCB(x_points , predictive_meanpredictive_var , incumbent ,
beta =0.4):

vals = predictive_mean + predictive_std * beta
return x_points[np.argmax(vals)]

Figure 8: Code of the UCB AF used for evaluation.

A.1 Experimental Setup

The experiments were performed on a server with a Intel(R) Xeon(R) Platinum 8470 CPU and two
H-100 GPUs for 130 hours at around 80% capacity.

B LLM Prompt

The template of the prompt used for the ICF experiments is shown in Figure 9
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""" Find best acquisition function consider trying different exploration and exploitation
terms , make sure high variations in finding the best acquistion functions.
Be sure you are not just adding a bunch of constant terms that doen’t make any changes
in the results.
On every iteration , improve the last acquisition_function_v over the
acquisition_function_vX methods from previous iterations.
Make sure the new acquisition function is different than the previous ones.
"""
import itertools
import numpy as np
from scipy import stats
import funsearch
import GPy
import math
import pickle

@funsearch.evolve
def acquisition_function_v0(eval_points , predictive_mean , predictive_var , incumbent ,

beta = 1.0):
""" Returns the index of the point to collect in a vector of eval points.
Given the posterior mean and posterior variance of a GP model for the objective
function , this function computes an heuristic and find its optimum. The next
function evaluation will be placed at the point corresponding to the selected
index in a vector of possible eval points.
Args:
predictive_mean: an array of shape [num_points , dim] containing the predicted mean
values for the GP model on the objective function for ’num_points ’ points of
dimensionality ’dim ’.
predictive_var: an array of shape [num_points , dim] containing the predicted variance
values for the GP model on the objective function for ’num_points ’ points
of dimensionality ’dim ’.
incumbent: current optimum value of objective function observed.
beta: a possible hyperparameter to construct the heuristic.
Returns:
An integer representing the index of the point in the array of shape [num_points , dim]
that needs to be selected for function evaluation.
"""
z = (incumbent - predictive_mean) / np.sqrt(predictive_var)
predictive_std = np.sqrt(predictive_var)
vals = (incumbent - predictive_mean) * norm.cdf(z) + predictive_std * norm.pdf(z)
point = x_points[np.argmax(vals)]
return point

def acquisition_function_v1(eval_points , predictive_mean , predictive_var , incumbent ,
beta =1.0):

""" Improved version of ‘acquisition_function_v0 ‘.""

Figure 9: Template of the prompt used for FunBO AF discovery in the ICF task.

9


	Introduction
	Background
	LLM for refining BO Acquisition Function
	Inertial Confinement Fusion

	Experiments
	LLM driven Acquisition Function Performance

	Conclusion
	Acknowledgement
	Acquisition Functions
	Experimental Setup

	LLM Prompt

