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Abstract

We develop diffusion models for lattice gauge theories which build on the concept
of stochastic quantization. This framework is applied to U(1) gauge theory in
1 + 1 dimensions. We show that a model trained at one small inverse coupling
can be effectively transferred to larger inverse coupling without encountering
issues related to topological freezing, i.e., the model can generate configurations
corresponding to different couplings by introducing the Boltzmann factors as
physics conditions, while maintaining the correct physical distributions without
any additional training. This demonstrates the potential of physics-conditioned
diffusion models for efficient and flexible lattice gauge theory simulations.
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1 Introduction

Lattice Quantum Chromodynamics (QCD) is a crucial non-perturbative framework for studying
strong interactions, offering valuable insight into hadronic structure and the quark-gluon plasma [1–3].
However, as Monte Carlo simulations approach the continuum limit, they are increasingly hindered
by topological freezing, where large energy barriers between topological sectors degrade sampling
efficiency and dramatically increase autocorrelation times [4–6]. While several methods have been
proposed to enhance Monte Carlo algorithms [6–8], the energy function-dependent nature of these
approaches presents a fundamental limitation, preventing efficient sampling across different regions
of parameter space.

To address these challenges, we propose a diffusion model-based generative algorithm for lattice
gauge theory, which builds on the concept of stochastic quantization [9–11]. By training the model
on gauge field configurations obtained at a single gauge coupling and volume, we demonstrate its
ability to generalize for different parameters without the need for retraining, effectively bypassing
issues related to topological freezing and scalability. This novel approach provides an interpretable
and scalable solution for global sampling, offering a promising alternative to traditional Monte Carlo
methods in lattice field theory.

Related work Recent progress in generative models has introduced new possibilities for lattice
field theory simulations [12]. Flow-based models, a prominent explicit likelihood estimation method,
have gained attention for enabling global sampling in lattice simulations due to their invertibility and
explicit use of gauge equivariance [12–17]. Besides, some variants of the normalising flow have also
been developed recently, such as continuous normalizing flow [18–21] and stochastic normalizing
flow [22, 23]. Diffusion models have recently excelled in generating high-quality samples across
diverse fields [24, 25], including high-energy physics [26–29]. The application to lattice field theory
was initiated in Refs. [30,31], where the connection to stochastic quantization [9–11] was highlighted;
a Feynman path integral formulation was presented later [32].

2 Physics-conditioned diffusion models

Diffusion models can be realized [30] as a variant of stochastic quantization [9], an alternative method
for quantizing field theories especially useful for gauge theories [10, 11]. One introduces a fictitious
time τ to extend the field ϕ(x) to ϕ(x, τ), which evolves according to a Langevin equation,

∂ϕ(x, τ)

∂τ
= − δS[ϕ]

δϕ(x, τ)
+
√
2η(x, τ), (1)

where η(x, τ) is a Gaussian white noise term. This reformulation allows for the evolution towards a
stationary distribution which corresponds to the (Euclidean) path integral of the quantum field theory.

Diffusion models consist of a forward diffusion process and a reverse denoising process. The forward
process follows the stochastic differential equation ∂ϕ

∂ξ = f(ϕ, ξ) + g(ξ)η(ξ), where 0 ≤ ξ ≤ T

is the forward time, f(ϕ, ξ) is the drift term, g(ξ) is the diffusion term, and η(ξ) is noise. The
reverse process [33] is described by ∂ϕ

∂t =
[
f(ϕ, t)− g2(t)∇ϕ log pt(ϕ)

]
+ g(t)η(t), where t flows

backward from T to 0, and pt(ϕ) is the distribution of ϕ(x) at time t. Although Gaussian noise in the
forward process simplifies the reverse process, modeling the t-dependent drift term requires a deep
neural network, which approximates it as sθ̂(ϕ, t) ≃

[
f(ϕ, t)− g2(t)∇ϕ log pt(ϕ)

]
. This allows

sample generation via the reverse process

∂ϕ(x, t)

∂t
= sθ̂(ϕ(x, t), t) + g(t)η(x, t), (2)

starting from a normal prior for ϕ(x), and with η(x, t) again Gaussian white noise.

In statistical systems and field theories, configurations are sampled from the physical distribution
p(ϕ) = exp[−S(ϕ;β)]/Z, where β is a parameter. If the action is separable, S(ϕ;β) = βS̃(ϕ), one
can carry out simulations at a reference value β0 and obtain results at different values of β using
Ferrenberg-Swendsen or histogram reweighting [34], provided there is sufficient overlap between the
simulated and the target ensembles.
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In diffusion models, with the variance-expanding scheme [35], the network represented score function
sθ is trained to learn the drift term −g2(t)∇ϕ log pt(ϕ) in the reverse process. In Langevin simulations
of fields, the drift term is determined by the action, −δS[ϕ]/δϕ(x, τ). If the action is separable, as
in pure gauge theories, the action and its derivative are proportional to the gauge coupling β. This
suggests that the well-learned score function at a reference coupling β0 can be used to replace the
drift term in Langevin simulations as

∂ϕ(x, t)

∂t
=

β

β0
sθ̂(ϕ(x, t), t;β0) + g(t)η̄(x, t), (3)

for sample generation at arbitrary β. Note that this extrapolation also avoids the need to estimate
the β-dependent normalization factor, since ∇ϕ log p(ϕ) ≡ −∇ϕ(S[ϕ] + lnZ(β)) = −∇ϕS[ϕ]. We
will refer to this formulation as a physics-conditioned diffusion model.

3 Gauge fields

3.1 Abelian gauge field theory

Abelian or U(1) gauge theories in two Euclidean dimensions provide simplified models for gauge
theories [13, 36, 37], while retaining some of the essential features of nonabelian theories in four
dimensions. The (continuum) action is S = 1

4

∫
d2xFµνF

µν , with the field strength tensor Fµν =
∂µAν − ∂νAµ and U(1) vector potentials Aµ (with µ = 0, 1). On an L × L square lattice with
periodic boundary conditions, gauge fields are represented by link variables Ux,µ = eiθx,µ , where
θx,µ is the gauge angle for the link from site x to x+ µ̂. The field strength is related to the plaquette
variable U2 ≡ Ux,µUx+µ̂,νU

†
x+ν̂,µU

†
x,ν = eiF01(x), and the lattice action is

S = −β
∑
2

Re(U2). (4)

Here β is the inverse coupling which controls the gauge interaction strength and ensures consistency
with the continuum limit (at large β) in simulations.

Physical properties of interest are estimated via the expectation value of observables Ô using the
Euclidean path integral, ⟨Ô⟩ =

∫
DU O(U)e−S(U)/Z, where

∫
DU denotes integration over the

Haar measure for each link and Z =
∫
DU e−S(U). The integration corresponds to the statistical

expectation value over all configurations in the distribution. As observables, we consider here Wilson
loops W (C), the topological charge Q, and the topological susceptibility χQ.

The Wilson loop W (C) is a gauge-invariant observable defined as the (trace of the path-ordered)
product of link variables around a closed contour C, W (C) = Tr

(
P exp

(
i
∮
C
Aµdx

µ
))

. For abelian
theories, the trace and path ordering are not required. On the lattice, this becomes

W (C) = Tr

 ∏
(x,µ)∈C

Ux,µ

 . (5)

For a rectangular loop of size l × l , Wl×l measures the flux through the region enclosed by C.
In two dimensions, the topological charge Q characterizes the winding number of the gauge field
configuration and is on the lattice given by

Q =
1

2π

∑
x

F01(x), (6)

where the phase F01 of the plaquette is chosen within the principal interval, i.e. F01(x) ∈ (−π, π].
The topological charge is significant in gauge theories as it relates to flux quantization and instantons.
The topological susceptibility is given by χQ = ⟨Q2/V ⟩, where V = L2 is the two-dimensional
volume.

3.2 Numerical tests

To illustrate our approach, we examine a fixed lattice size of L = 16 and train the DM at β = 1, using
30,720 configurations generated with hybrid Monte Carlo (HMC). The gauge angles θx,µ are the
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chosen degrees of freedom. We apply a series of gauge transformations to the original configurations,
treating the transformed configurations as new configurations for training. By performing four gauge
transformations on the original set, we increase the total number of configurations used for training
to 153,600.

With regard to the set-up of DM, we represent the score function with a U-Net architecture following
our previous work [30], with an encoder-decoder structure and symmetric skip connections. The
default shape of the input is set as (·, 2, 16, 16), where the first dimension is the batch size, the second
indicates the channel, and the final two represent dimensionalities of the field configuration. The skip
connections between corresponding encoder and decoder layers help preserve spatial information lost
during downsampling. To account for the periodic boundary conditions in Lattice QCD configurations,
periodic padding is applied at each layer of the network and time and spatial directions are viewed
as two distinct channels of the network. We subsequently test the well-trained DM to generate
configurations at different β values with physics-conditions.
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Figure 1: Comparison of distributions for the Wilson loop (left) and the topological charge (right)
at β = 1 from the test data-set (HMC) and from the trained DM. The number of independent
configurations is 1,024 in both cases.

The performance of the training procedure at β = 1 is presented in Figure 1. Using HMC we
generated an additional 1,024 configurations as our test ensemble and compared these with 1,024
configurations generated by the trained DM. The distributions of the Wilson loop (left) are consistent.
The distributions of the topological charge (right) are consistent as well and, moreover, we note that
no issues related to topological freezing are observed in either the HMC or DM results, as evidenced
by the wide distribution of topological charges.
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Figure 2: Comparison of distributions for the Wilson loop (left) and the topological charge (right)
at β = 7 from the test data-set (HMC) and from the DM trained at β = 1 but conditioned at β = 7.
The number of independent configurations is 1,024 in both cases.

Next we use the DM trained at β = 1 to generate 1,024 configurations at β = 7, using Eq. (3),
and also use HMC to generate an equal number of configurations directly at β = 7. The results
are displayed in Figure 2. We observe that the Wilson loop distributions (left) remain consistent
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between the two appraoches. For the topological charge (right) on the other hand, we observe that
HMC suffers from topological freezing, only sampling values of Q at or around 0 . In contrast, the
physics-conditioned DM is able to explore a wider range of topological sectors, yielding a larger
topological susceptibility. We are currently comparing the numerically computed distribution with
the analytical prediction, which is possible in this simple theory [15].
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Figure 3: Trajectories of topological charge Q for 64 different initial configurations, generated in
the backward process at β = 7, using the diffusion model trained at β = 1. The left panel gives the
evolution from 0 to 0.95. The right panel shows the rest time steps with a zoomed plot.

To see how the DM samples the topological sectors, we show in Figure 3 trajectories of topological
charge Q for 64 different initial configurations, generated in the backward process at β = 7, using
the diffusion model trained at β = 1. We observe that in the first part of the backward process, up
to t ∼ 0.5, the topological charge is fluctuating substantially, before all 64 trajectories converge to
Q = 0. The physically relevant part of the evolution occurs towards the end of the backward process,
where the different trajectories explore the topological sectors again and finally settle down to yield a
distribution similar to the one shown in Figure 2 (right).

Besides the above computations, the detailed implementation of HMC, DM, and Langevin simulations,
along with a thorough analysis of their performance and associated uncertainties, will be presented
in a coming comprehensive study. This future work will provide an in-depth discussion of the
methodologies employed, as well as a rigorous assessment of the accuracy and reliability of the
simulations.

4 Summary

Diffusion models are a promising tool to generate configurations in lattice field theory. Here we
have presented diffusion models for lattice gauge field simulations, and introduced a new approach
to extrapolate in the gauge coupling, by adjusting the learned score by a simple multiplication, as
motivated by the connection to stochastic quantization. We have presented an implementation for a
U(1) theory in two dimensions and shown that the issue of topological freezing is alleviated when
compared to the traditional HMC algorithm, by employing a diffusion model trained in a region of
parameter space where topological freezing is absent.
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