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Abstract

We introduce new high-resolution galaxy simulations enhanced by a surrogate
model that reduces the computation cost. Some stars explode at the end of their
lives, known as supernovae (SNe), which play a critical role in galaxy formation.
The energy released by SNe is essential for regulating star formation and driving
feedback processes in the interstellar medium (ISM). However, due to insufficient
mass resolution, conventional simulations have employed simple sub-grid models,
assuming a uniform environment, which fail to capture the inhomogeneity of the
shell expansion of SNe within the turbulent ISM. Our new framework integrates
numerical simulations and surrogate modeling, including machine learning and
Gibbs sampling. The resulting distributions of the density and temperature of
the ISM in the galaxy match those obtained from direct (resolved) numerical
simulation. Our new approach achieves high-resolution fidelity while reducing
computational costs by approximately 75 percent, effectively bridging the physical
scale gap and enabling multi-scale simulations.

1 Introduction

Supernova (SN) explosions are highly energetic events that release an immense amount of energy that
heats and expels the ambient interstellar medium (ISM). SNe significantly impact galactic evolution
by driving galactic outflows and turbulence and influencing star formation rates and galaxy scale
heights [1, 2]. Those dynamics are consequences of the interaction among non-linear physical
processes such as gravity, hydrodynamics, radiation, star formation, and chemical evolution. To
investigate the interplay of those complex physical processes, numerical simulations have been
employed. In recent years, the development of compute architectures, combined with improvements
in algorithms, has led to a surge of galaxy formation and evolution models that can resolve detailed
relevant physical processes down to the resolution of single stars in low-mass dwarf galaxy systems.
Still, the current resolution of more massive galactic ecosystems such as the Milky Way (MW) is
limited to ∼ 103 M⊙

2 per resolution element due to the computational cost requirements and the
lack of scalability of many approaches for feedback physics in the multiphase ISM [3, 4]. One of the
bottlenecks is caused by frequent communication between nodes due to small timesteps required for
resolving hot and dense events such as SNe. To skip the bottleneck, SNe have been implemented with
so-called sub-grid models [e.g., 5], which are assuming homogeneous environments and spherical
symmetries. To directly incorporate the effect of SNe, we attempt to accelerate high-resolution galaxy
simulations using machine learning. This paper presents the first framework integrating our surrogate
model into numerical galaxy simulations with real-time predictions, as well as the accuracy and
speed-up.
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Figure 1: Schematic diagram for our new framework to skip bottlenecks of supernova feedback in
galaxy simulations. Our surrogate model is 100 times faster at reconstructing the shell and distribution
of thermal energy and momentum of a SN explosion in 3D.

2 Background

Related Works Machine learning (ML) has the potential to overcome the current limitations in
resolution, allowing us to extend the range of physical scales in computationally intensive simulations
[e.g., 6]. In the application for astrophysical simulations, ML-based surrogate models have been used
to predict the gravitational dynamics to avoid direct calculations for billions of particles, representing
dark matter and stars, over billions of years [7, 8] using convolutional neural networks (CNNs).
Applying CNNs to particle-based simulations is not straightforward. Nevertheless, to gain efficient
computation, we have developed machine learning approaches to learn time evolution with CNNs in
particle-based hydrodynamics simulations by interpolating the particles on voxels [9, 10].

Bottlenecks in Galaxy Simulations The galaxy evolution simulations in this paper were carried out
using our code ASURA-FDPS [11, 12, 9] implemented with Lagrangian (particle-based) methods
of N -body for dark matter and stars and smoothed particle hydrodynamics (SPH) for gas. N -body
discretizes Poison equations while the SPH method discretizes Euler equations with self-gravity
and radiative cooling and heating. SPH offers advantages over Eulerian methods, such as Galilean
invariance for non-symmetric systems like the ISM, the avoidance of numerical diffusion, and accurate
mass conservation. SPH has been widely used in computational astrophysics and fluid dynamics to
solve compressible fluid problems involving multi-scale physics. There may be challenges in resolving
contact discontinuity by blastwaves, such as SN shells with low mass resolution. Nevertheless, it has
been verified when the mass resolution is finer than 1 M⊙ [13, 14, 9].

However, simulating MW-like galaxies with 1 M⊙ resolution poses computational challenges,
requiring over 1010 gas and star particles, far beyond current capabilities. This is because achieving
such high-resolution simulations necessitates small timesteps, which is critical for accurately resolving
SN explosions. The timesteps are constrained due to the Courant-like hydrodynamical timestep [15]
based on the signal velocity [16, 17]. The timestep of a particle i is determined as

∆ti = CCFL
2hi

maxj [ci + cj − 3wij ]
(1)

where CCFL = 0.3, hi and ci are the SPH kernel length and sound speed of a particle i, and

wij = vij · rij/rij , (2)

where rij and vij are the relative position and velocity between particles i and j, respectively. Despite
gas particles typically requiring a timestep of ∼ 104 years, the hot and dense regions such as SNe
require ∼ 102 years given hi ∝ ρ

−1/3
i and ci ∝ T

1/2
i . This can be a bottleneck in the simulation.
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Figure 2: Face-on surface gas density at t = 108 years. The color bar represents the column density
(1010 M⊙ kpc−2). Left: Full numerical simulation implemented with the thermal feedback for SNe.
Right: Our new framework with our surrogate model for SN explosions in denser environments.

Problem Definition - Divide and Conquer We designed a new framework for running simulations
at high speed compared to conventional numerical simulations, even when increasing the resolution.
To avoid the direct computation requiring small timesteps caused by SNe, we locally replace numerical
simulation for SNe with our surrogate model presented in [10]. Fig 1 shows a schematic diagram of
our presenting framework. In simulations of an entire galaxy (left), our surrogate model reconstructs
SNe (right), reducing the need for direct simulations. The model reconstructs a particle distribution
105 years after the SN explosions, while the entire galaxy is calculated with a global timestep of
2, 000 years. After the galaxy simulation progresses by 105 years, the surrogate model’s prediction is
merged into the entire galaxy simulation, indicated by the orange arrow from right to left.

3 Methods

Surrogate Model for Supernova Explosions To address computational bottlenecks in galaxy
simulations with multi-scale physics, we developed a ML-based surrogate model utilizing a U-Net
architecture [18] based on CNNs, presented in [10]. The loss function, mean squared error, was
minimized using the ADAM optimizer [19] with a learning rate of 10−5. The model is applied for
SN explosions in an environment denser than a hydrogen number density of 1 cm−3 where small
timesteps are especially required. The training dataset includes 300 independent SN simulations in
turbulent gas clouds with a mass resolution of 1 M⊙ and minimum timestep of ∼ 100 years calculated
by equation (1). The model predicts the physical distribution at t = 105 years after a SN explosion,
given the initial gas distribution. The data represents 3D scalar fields with a size of 643 voxels and
eight channels. The first two channels receive log-transformed density and temperature to effectively
learn a wide range of physical quantities due to compressible hydrodynamics. Because velocities
have a bimodal distribution, the 3D velocities were allocated into the rest of the six channels as
positive vx, vy , vz , and negative vx, vy , vz . One side of the voxels is 60 parsec.

The model can reconstruct the results of high-resolution simulations with thermal energy and mo-
mentum conservation, which are crucial for galactic evolution [e.g., 5], better than low-resolution
simulations. Additionally, this inference is 100 times faster than that of direct computation. With
the prediction by our ML model, we reconstruct new particle distribution by the Gibbs sampling.
The total mass is always conserved by sampling the same number of particles as the input from the
predicted density distribution.

Simulation set-up For direct comparison between numerical simulations and our new ML-
integrated method, we use an initial condition of a dwarf galaxy originally described in [13, 20], with
the initial mass of 4×107 M⊙ for gas. The initial disk consists of ∼ 20 million particles, setting a gas
particle mass resolution of mgas = 4 M⊙. We run two simulations, SN-noFUV-ML and SN-noFUV,
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which are implemented with and without the surrogate model, respectively. In SN-noFUV, when SNe
explode, the thermal energy of 1051 erg is injected into 100 neighbor particles (thermal feedback). In
SN-noFUV-ML, our surrogate model reconstructs shells and the distribution of energy and velocities
of a SN. We note that our surrogate model projects high-resolution (1 M⊙) predictions from the
learned model onto the galaxy simulations with a mass resolution of (4 M⊙). The inference is
accelerated by ONNX [21] and SoftNeuro [22] for x86 and ARM architecture, respectively.

4 Results
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Figure 3: Density and temperature of gas
in the galaxy. The particles are averaged
using snapshots for 108 years.

Fidelity Fig. 2 shows the surface density for isolated
galaxy simulations. SNe are implemented with the ther-
mal feedback described in Sec. 3 in SN-noFUV (left) and
reconstructed with our surrogate model in SN-noFUV-ML
(right). The morphological structures of the resolved gas
resemble each other. Both have distinct cavities called
superbubbles, formed by some stars that formed in dense,
cold regions and underwent SN explosions almost simul-
taneously. In general, fine mass and time resolutions are
required for accurately resolving such superbubbles; oth-
erwise, the hot gas within the bubble cools too quickly. In
our new scheme (SN-noFUV-ML), however, despite the
longer timesteps, several distinct superbubbles emerged.
We note that even with the same initial condition and same
implementation, the gas distributions in two different sim-
ulations do not perfectly match due to randomness in some
of the physical models, such as star formation.

Fig. 3 shows the density and temperature distribution in the
galaxy. The histograms are averaged between 108 years
with an interval of 107 years. SN-noFUV-ML replicates
the bimodal distribution in density and temperature for
SN-noFUV.
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Figure 4: The comparison of
calculation steps between di-
rect simulations and our new
framework accelerated by the
surrogate model for 108 years.

Speed-up Fig. 4 compares calculation steps between full numer-
ical simulations (SN-noFUV) and simulations accelerated by the
surrogate model for SN feedback (SN-noFUV-ML). This type of
galaxy simulation usually requires a few months to years. Thus,
our surrogate model’s reduction of the calculation steps may help
run these simulations within a practical time and resources. As a
practical example for a total simulation period of 109 years using
∼500 Cascade Lake CPUs, our framework can be completed within
two months, reducing the runtime by approximately six months.

5 Conclusions

We have implemented a surrogate model, incorporating a CNN-
based machine learning model, into our galaxy simulation code. Our
surrogate model projects high-resolution predictions of SN explo-
sions from the learned model onto galaxy simulations. Our results
show that this new framework can accurately replicate superbub-
bles, which typically require fine mass and time resolution, even
with a fourfold speedup. Additionally, our simulation code with the
surrogate model for SNe can reconstruct gas density and temperature structures. We plan to run
high-resolution simulations for LMC-like and WM-like galaxies, which are ten and one hundred times
larger than the galaxy studied in this paper and have been challenging to simulate fully numerically.
Our new framework may enable these high-resolution and more massive galaxy simulations, allowing
us to study the evolution of structures in galaxies such as the MW in much more detail than ever.
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