
Inferring Stability Properties of Chaotic Systems on
Autoencoders’ Latent Spaces

Elise Özalp
Department of Aeronautics
Imperial College London

elise.ozalp@imperial.ac.uk

Luca Magri
Department of Aeronautics
Imperial College London
The Alan Turing Institute

l.magri@imperial.ac.uk

Abstract

The data-driven learning of solutions of partial differential equations can be based
on a divide-and-conquer strategy. First, the high dimensional data is compressed to
a latent space with an autoencoder; and, second, the temporal dynamics are inferred
on the latent space with a form of recurrent neural network. In chaotic systems
and turbulence, convolutional autoencoders and echo state networks (CAE-ESN)
successfully forecast the dynamics, but little is known about whether the stability
properties can also be inferred. We show that the CAE-ESN model infers the
invariant stability properties and the geometry of the tangent space in the low-
dimensional manifold (i.e. the latent space) through Lyapunov exponents and
covariant Lyapunov vectors. This work opens up new opportunities for inferring
the stability of high-dimensional chaotic systems in latent spaces.

Figure 1: Illustration of the CAE-ESN with the Kuramoto-Sivashinsky data as an example.

1 Introduction

Convolutional autoencoder recurrent neural networks have become a promising approach for fore-
casting chaotic and turbulent systems [1–4]. This framework addresses the challenge of modelling
high-dimensional chaotic systems by compressing the data into a nonlinear latent representation
through a convolutional autoencoder (CAE) and a recurrent neural network to propagate the lower-
dimensional temporal dynamics on the latent manifold. This addresses a challenge in chaotic
partial differential equations (PDEs) and turbulent systems: although the state might live in a high
dimensional space; in the asymptotic limit, the solution converges to a lower dimensional attractor.

The chaotic properties of the attractor are characterized by invariant measures, such as Lyapunov
exponents, the Kaplan-Yorke dimension, and the geometry of the tangent space. Although it is
possible to infer these measures through echo state networks (ESNs) [5] and long short-term memory
networks [6], these methods for data-driven stability analysis do not effectively apply to high-
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dimensional data. Furthermore, the stability properties of hybrid CAE-RNN models, specifically of
the latent manifolds generated by autoencoders, remain unexplored.

In this paper, we address this gap by employing ESNs, a reservoir computer, as recurrent neural
networks [7] and applying stability analysis to investigate and characterize latent manifolds. We thus
extend the CAE-ESN methodology [3] by performing data-driven stability analysis on the latent space
of a convolutional autoencoder of a spatiotemporal PDE, i.e., the Kuramoto-Sivashinsky system.

2 Learning stability properties in latent spaces

The Kuramoto-Sivashinsky (KS) equation is a prototypical partial differential equation (PDE) to
study chaos in spatial-dissipative systems [8]. The PDE models instabilities and flame fronts and is
given by

ut + uxx + uxxxx + uux = 0 (1)
with periodic boundary conditions on the spatial domain [0, L]. To solve the PDE, we spatially
discretize the domain into Nx grid points. This discretization allows us to interpret Eq. (1) as a
dynamical system in the form of ut = f(u) with f being a smooth function and u ∈ RNx .

As the domain length L increases, the solution of Eq. (1) transitions from a quasiperiodic system to
a chaotic solution [9]. This behaviour can be analysed via stability analysis, which focuses on the
tangent space defined by the Jacobian J = ∂f/∂u to examine the chaotic stability. By imposing an
infinitesimal perturbation δu to the trajectory of the system and evolving it after Eq. (1), we obtain
the linearized tangent equation

δut = J(u(t))δu. (2)
For a detailed explanation of tangent space methods, we refer the reader to [10, 11] and briefly
summarize the key properties that can be derived from Eq. (2) here.

Chaotic systems are characterized by exponential sensitivity to perturbations, a property which can be
measured through Lyapunov exponents (LEs). Each Lyapunov exponent λ1, . . . , λNx

measures the
average rates of convergence and divergence of nearby trajectories in the system’s phase space RNx .
When the system is chaotic, the solution u occupies only a small subset A of the phase space in RNx .
This subset, known as the attractor, has a fractal structure, the dimension of which can be estimated
through the Kaplan-Yorke dimension DKY [12], among other dimensionality estimates [13, 14].

Further insight into the system’s geometry is provided by the covariant Lyapunov vectors (CLVs)
v1, . . . ,vNx

[10, 15], which offer an invariant splitting of the tangent space into unstable, neutral,
and stable subspaces, corresponding to positive, zero, and negative Lyapunov exponents, respectively.
In hyperbolic systems, the angles between CLVs from different subspaces are bounded away from
zero. The angle θvi,vj

between a pair of CLVs vi and vj from different subspaces is calculated as

θvi,vj
=

180◦

π
cos−1(|vi · vj |), (3)

where · denotes the dot product. For spatial-dissipative systems such as the KS system, the CLV
angles also allow for the isolation of physically relevant modes that capture the essential dynamics of
the system. The number of these physically relevant modes is typically larger than the Kaplan-Yorke
dimension but still significantly smaller than the number of grid points. From a theoretical perspective,
it has been conjectured that capturing the physical modes is sufficient to faithfully integrate PDEs [16].
This provides a guideline for the design of an optimal reduced order model, which should capture all
the time-invariant properties of the attractors, i.e. the LEs and the Kaplan-Yorke dimension, but also
reproduce the geometric structure of the attractor through the CLVs.

3 Methods

For dissipative chaotic systems such as in Eq. (1), the state space may be high-dimensional, but in the
asymptotic limit, the solution converges to a lower-dimensional chaotic attractor. This work follows a
two-step approach: first, we compute the low-dimensional manifold with a convolutional autoencoder
(CAE) for a nonlinear reduced-order representation, and second, we propagate the latent dynamics
using an echo state network (ESN), see Fig. 1.1

1A tutorial is available on GitHub: github.com/MagriLab/LatentStability. The training is performed on a
single Quadro RTX 8000.

2

https://github.com/MagriLab/LatentStability


3.1 Convolutional autoencoder

Let {u(ti,x)}i=0,1,... be the discretized solution to Eq. (1). We first aim to find a lower-dimensional
manifold representation of the system using a CAE. The encoder E maps the physical input u(ti) ∈
RNx to a latent representation y(ti) ∈ RNlat . The decoder D then maps the physical state from the
latent representation to the phase space

û(ti) ≈ u(ti), where û(ti) = D (y(ti)) , y(ti) = E (u(ti)) , (4)

and û(ti) is the autoencoder reconstruction. The network is trained by minimizing the loss L(u, û) =
1

Ntr

∑Ntr

i=1 ∥u(ti) − û(ti)∥22, where Ntr is the number of training samples. By first applying an
autoencoder to each snapshot, we obtain a spatial compression of the input, with the convolutional
layers filtering the spatial multiscale structure of the data. The objective is to find a latent space that
approximately retains the geometry of the attractor while providing a minimal representation.

3.2 Echo state network

The trained autoencoder provides a transformation from the physical snapshot u(ti) to the latent
representation z(ti) and vice versa. To learn the temporal dynamics of the training data, we employ
the ESN [7] on the time-ordered latent representations {y(ti)}i=1,··· ,Ntr , resulting in the CAE-ESN.
The ESN evolves the latent representations y(ti) to the next-time step prediction ŷ(ti+1) according
to

r(ti+1) = tanh
(
[y(ti); 1]

TWin + r(ti)
TW

)
, (5)

ŷ(ti+1) = [r(ti+1), 1]
TWout. (6)

Here, the matrices Win and W are pseudorandomly generated and fixed [17] and σin is found by
Bayesian optimization [18]. By formulating the loss as L(y, ŷ) = 1

Ntr

∑Ntr

i=1 ∥y(ti)− ŷ(ti)∥22, the
ESN training is performed by solving for Wout using ridge regression, speeding up the training by
avoiding backpropagation. The ESN can be employed in two modes, open-loop and closed-loop.
Whilst training, the network operates in open-loop mode, predicting the next time step based on
a reference input. Once Wout has been fixed, the network can be employed in the closed-loop
configuration where the network prediction is used as input in Eq. (5), allowing the network to
autonomously evolve without additional input data.

This setup effectively defines a dynamical system, and the stability properties of the network can
be calculated [5]. The first step is to calculate the Jacobian of the ESN, Jesn(r(ti+1)) = (1 −
r(ti)

2)(WT
inW

T
out +WT ). The Jacobian Jesn is then employed in the tangent equation, Eq. (2), to

calculate the LEs and CLVs [5]. The ESN predicts the temporal dynamics on the latent manifold and
the Jacobian, therefore, defines the tangent space of the latent manifold. Consequently, the calculated
stability properties are inferred on the latent manifold, not in the full physical space.

4 Numerical tests

We consider the KS equation with L = 22 for which the system is chaotic with an attractor dimension
of DKY = 6.007 and a largest Lyapunov exponent of 0.045 [19]. In related work [20, 21], the
number of physical modes is determined to be 8, providing an estimate for the minimal autoencoder
latent dimension. We generate the reference solution of the Kuramoto-Sivashinsky equation with
Nx = 512 for a duration of T = 105 and ∆t = 0.05.

First, we train a convolutional autoencoder to map the full state u(ti) with Nx = 512 to the latent
representation z(ti) with dimension Nlat = 8. After training the autoencoder, we train the ESN on
the latent space. In Fig. 2(a), we present the autonomous prediction of the CAE-ESN based on the
reduced representation. Despite using less than 2% of degrees of freedom, the CAE-ESN accurately
forecasts the evolution for about 2LT 2. After 2LT the trajectories slowly diverge, reflecting the
inherent sensitivity of chaotic systems to perturbations.

More insight into the physical behaviour of the CAE-ESN is obtained by investigating the invariant
properties of the network. In Fig. 2(b), we show the convergence of the LEs of the CAE-ESN over

2One Lyapupunov time (LT) is defined by λ−1
1 and denotes a characteristic time scale at which two trajectories

of a chaotic system diverge.
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Figure 2: (a) Autonomous prediction of the CAE-ESN on the latent manifold of dimension Nlat = 8.
(b) Convergence of the Lyapunov exponents of the CAE-ESN over 100LT .

100LT . To assess the robustness, we take an ensemble of 10 ESNs to analyse the stability properties
in the latent space. In Fig. 3(a), we compare the reference LEs (in black squares) with the mean
LEs obtained from 10 ESNs (in red circles). The mean Kaplan-Yorke Dimension of the CAE-ESN
is given by 6.008± 5 · 104 compared to the reference of DKY = 6.007. The CAE-ESNs correctly
reproduce the first 10 LEs, which correspond to the physical behaviour of the system, indicating that
the forecast based on the reduced representation captures all essential chaotic dynamics.

Figure 3: (a) The first 10 Lyapunov exponents of the dynamical system (black squares) compared to
the Lyapunov exponents across 10 different ESNs (red dots) after 100LT . The shaded area indicates
the standard deviation. (b - d) The angle distribution of the Kuramoto–Sivashinsky system for leading
covariant Lyapunov vectors of the (b) unstable-neutral, (c) unstable-stable and (d) neutral-stable
Lyapunov exponents.

We further examine the CAE-ESN abilities to capture the geometric structure by studying the angles
between CLVs in Fig. 3(b - d). The agreement of angle statistics between the reference and the
CAE-ESN is within a negligible numerical error with a Wasserstein distance of 0.001, demonstrating
that the geometrical structure of the attractor has been effectively captured in the latent manifold.

5 Conclusions

We propose a data-driven method to infer the stability properties of chaotic partial differential
equations. This is based on the convolutional autoencoder echo state network (CAE-ESN), where
the CAE discovers a nonlinear latent representation of minimal dimension, on which the ESN
propagates the temporal dynamics. By applying the CAE-ESN to the chaotic Kuramoto-Sivashinsky
equation, we show that (i) invariant measures, such as Lyapunov exponents and the Kaplan-Yorke
dimension, are accurately and robustly inferred in the latent space, (ii) the geometric properties of
the attractor, including the angles of the covariant Lyapunov vectors (CLVs), are accurately learned.
This approach enables both nonlinear forecasting and stability analysis of chaotic partial differential
equations. Inferring stability properties of latent manifolds generated by a CAE offers a perspective
on understanding autoencoder manifolds using dynamical systems tools.

4



Acknowledgments

This research has received financial support from the EPSRC Grant No. EP/W026686/1 and from the
ERC Starting Grant No. PhyCo 949388.

References
1A. J. Linot and M. D. Graham, “Data-driven reduced-order modeling of spatiotemporal chaos with
neural ordinary differential equations”, Chaos: An Interdisciplinary Journal of Nonlinear Science
32 (2022).

2P. R. Vlachas, G. Arampatzis, C. Uhler, and P. Koumoutsakos, “Multiscale simulations of complex
systems by learning their effective dynamics”, Nature Machine Intelligence 4, 359–366 (2022).

3A. Racca, N. A. K. Doan, and L. Magri, “Predicting turbulent dynamics with the convolutional
autoencoder echo state network”, Journal of Fluid Mechanics 975, A2 (2023).

4K. Fukami, T. Nakamura, and K. Fukagata, “Convolutional neural network based hierarchical
autoencoder for nonlinear mode decomposition of fluid field data”, Physics of Fluids 32 (2020).

5G. Margazoglou and L. Magri, “Stability analysis of chaotic systems from data”, Nonlinear Dy-
namics 111, 8799–8819 (2023).

6E. Özalp, G. Margazoglou, and L. Magri, “Reconstruction, forecasting, and stability of chaotic
dynamics from partial data”, Chaos: An Interdisciplinary Journal of Nonlinear Science 33 (2023).

7H. Jaeger, “The “echo state” approach to analysing and training recurrent neural networks-with an
erratum note”, Bonn, Germany: German National Research Center for Information Technology
GMD Technical Report 148, 13 (2001).

8Y. Kuramoto, “Diffusion-Induced Chaos in Reaction Systems”, Progress of Theoretical Physics
Supplement 64, 346–367 (1978).

9D. T. Papageorgiou and Y. S. Smyrlis, “The route to chaos for the kuramoto-sivashinsky equation”,
Theoretical and Computational Fluid Dynamics 3, 15–42 (1991).

10F. Ginelli, P. Poggi, A. Turchi, H. Chaté, R. Livi, and A. Politi, “Characterizing dynamics with
covariant lyapunov vectors”, Physical Review Letters 99, 130601 (2007).

11M. Sandri, “Numerical calculation of lyapunov exponents”, Mathematica Journal 6 (1996).
12P. Frederickson, J. L. Kaplan, E. D. Yorke, and J. A. Yorke, “The liapunov dimension of strange

attractors”, Journal of differential equations 49, 185–207 (1983).
13S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,

and engineering (CRC press, 2018).
14P. V. Kuptsov and U. Parlitz, “Theory and computation of covariant lyapunov vectors”, Journal of

nonlinear science 22, 727–762 (2012).
15F. Huhn and L. Magri, “Stability, sensitivity and optimisation of chaotic acoustic oscillations”,

Journal of Fluid Mechanics 882, A24 (2020).
16K. A. Takeuchi, H.-l. Yang, F. Ginelli, G. Radons, and H. Chaté, “Hyperbolic decoupling of tangent

space and effective dimension of dissipative systems”, Physical Review E 84, 046214 (2011).
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