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Abstract

The specialized language and complex concepts in physics pose significant chal-
lenges for information extraction through Natural Language Processing (NLP).
Central to effective NLP applications is the text embedding model, which con-
verts text into dense vector representations for efficient information retrieval and
semantic analysis. In this work, we introduce PhysBERT, the first physics-specific
text embedding model. Pre-trained on a curated corpus of 1.2 million arXiv
physics papers and fine-tuned with supervised data, PhysBERT outperforms lead-
ing general-purpose models on physics-specific NLP tasks.

1 Introduction

The field of physics encompasses a vast body of knowledge, spanning numerous sub-disciplines
and theoretical frameworks. The specialized language used in physics publications [48] and the
extensive corpus of information disseminated through academic journals, textbooks, technical re-
ports, and online repositories present significant challenges for automated extraction of meaningful
insights. To address these challenges, we introduce PhysBERT, a sentence embedding model specif-
ically designed for the field of physics. Leveraging the BERT [9] architecture, PhysBERT is trained
on a curated corpus of physics literature based on 1.2 million physics papers available on arXiv [4],
encompassing a wide range of sub-disciplines within the field.

In this paper, we aim to validate the effectiveness of PhysBERT by creating specific datasets and
downstream evaluation tasks such as information retrieval, classification, and semantic similarity,
all tailored to the physics domain. The combination of comprehensive pre-training and targeted,
supervised fine-tuning equips PhysBERT with a deep understanding of physics language, enabling
it to significantly outperform general-purpose models on these physics-related NLP tasks. Addi-
tionally, we demonstrate that PhysBERT serves as an excellent starting point for fine-tuning in spe-
cific physics subdomains, highlighting its adaptability and potential for further specialization. A
schematic overview of the workflow described in this paper is provided in Fig. 1. In addition to our
model weights, we are releasing the training and evaluation datasets alongside this manuscript [3].

2 Related Work

Recent advancements in Natural Language Processing (NLP) are fundamentally transforming our
ability to analyze and process textual data [26]. At the forefront of this transformation are text em-
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Figure 1: Schematic overview of the steps involved in developing the PhysBERT embedding model.

bedding models [25, 30], which convert textual data into dense vector representations, enabling com-
putational analysis such as efficient information retrieval [23], text classification [16], and semantic
similarity measurement [32]. In academic research, domain-specific embeddings can significantly
enhance the accuracy of literature reviews by clustering related papers [38], identifying emerging
trends [42], and improving the precision of reviewer matching tools for scientific journals [50]. In
the last few years, Transformers [47] have become the foundation of these models [9, 32], which
has significantly enhanced context awareness in NLP tasks. General-purpose text embedding mod-
els [11], typically trained on a diverse range of internet texts [27], lack the domain-specific modelling
required to accurately represent the language of specific disciplines. Specialized embedding mod-
els have demonstrated significant improvements across various fields in natural science, including
chemistry [37], material science [14], and the biomedical domain [18]. However, the domain of
physics notably lacks embedding models specifically tailored to its unique semantic characteristics.
Consequently, general-purpose embedding models are currently utilized in physics NLP applications
due to the absence of specialized alternatives [15, 41, 31, 28, 40].

3 Downstream tasks

Due to the lack of publicly available benchmarks for scientific physics publications, we developed a
custom set of assessments, closely following recognized text embedding benchmarks [27, 44].

Category Clustering: Sentences are paired with ground truth labels indicating their physics cate-
gory. The sentences are first embedded into vector representations, and the KMeans [29] algorithm
groups the embeddings into clusters, with the number of clusters matching the unique labels in the
dataset. Clustering performance is evaluated using the V-measure score [35], with a stratified 10-fold
cross-validation [36]. The final metric is the mean V-measure score across all test sets.

Information Retrieval: We follow common information retrieval benchmarking practices [44, 27].
Following standard RAG procedures, the embedding model transforms all queries and documents
into embeddings, and cosine similarity scores are calculated between each query and all documents.
Documents are then ranked based on these scores. Retrieval effectiveness is measured using the
normalized Discounted Cumulative Gain at rank 10 (nDCG@10) [46].

Citation Classification: To evaluate the embedding models on the ability to correctly classify citing
articles, we use a binary classification benchmark [32]. We use a balanced dataset with equal num-
bers of positive (citing) and negative (non-citing) pairs. Using cosine similarity, pairs are classified
by identifying the optimal threshold separating positive and negative labels. The model’s accuracy,
referred to as cosine accuracy [39], is calculated based on the percentage of correct classifications.

Fine-tuning on Physics Subdomains: To demonstrate the effectiveness of PhysBERT as a foun-
dation for domain-specific fine-tuning, we leverage the extensive nature of three large categories
within arXiv—Condensed Matter, Astrophysics, and High Energy Physics—each of which com-
prises multiple subcategories. For instance, Astrophysics includes explicit subcategories such as
‘Cosmology and Nongalactic Astrophysics’ and ‘Earth and Planetary Astrophysics’ (see Ref. [5]
for all categories). For the evaluation of this fine-tuning task we use a simplified setup akin to the
supervised fine-tuning setup described above, with category clustering as the only evaluation metric.
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Figure 2: Comparison of embedding space visualizations for PhysBERT (left) and bge-base-
v1.5 [49] (right, see also Table 1), using PCA on text embeddings from 500 random abstracts per
physics category (as highlighted by different colors).

4 Datasets

For unsupervised pre-training, we download all available papers from arXiv [4] (see Appendix A.1
for ethics statement), including both PDFs and the available metadata using the provided bulk data
access [6]. We restrict the postprocessing to papers categorized by their authors under one of the
61 physics categories [5], which totalled to 1,25 million papers. All PDFs are processed using
Nougat [8], and we utilize a postprocessed version containing only the full text of the sections,
excluding captions, references, resulting in a corpus comprising 41 GB of text or about 6.1B words.

4.1 Supervised fine-tuning

Abstract pairs from categories: ArXiv publications are categorized based on the primary category
assigned by the authors upon submission. To ensure robustness, we exclude categories with fewer
than 5,000 papers and combine all subcategories under Astrophysics, Condensed Matter, and High
Energy Physics—categories so extensive that they have subcategories—into their respective main
categories. This approach leaves us with 21 categories, from which we draw 2 million abstract
pairs, equally distributed across the categories to ensure a balanced dataset.

Citation pairs: We build a comprehensive citation tree using the Semantic Scholar [1] database API
to query the references of papers in our arXiv database. By doing so, we can identify and pair the
titles of papers that cite each other. We include 1M citation pairs in the training set.

Synthetic Query-Source Data: We use data augmentation, which artificially creates data to mimic
real-world characteristics and patterns rather than directly collecting it [21]. Specifically, we gen-
erate 2M question-and-answer pairs from text chunks extracted from research papers, similar to
standard RAG workflows [13]. We randomly select 1000-character text chunks from papers and use
a locally running LLaMA3-70B [24] to generate three question-answer pairs exclusively answerable
by the provided text.

4.2 Model evaluation data

For general physics clustering, we utilize 1,000 labeled paper abstracts from each of 21 major arXiv
physics categories. Citation classification involves 50k pairs of citing and non-citing paper titles,
while information retrieval uses 50k query-source pairs. All evaluation data is separate from the
training sets. For subdomain fine-tuning, we focus on three large arXiv categories: Condensed Mat-
ter (10 subcategories), Astrophysics (7 subcategories), and High Energy Physics (4 subcategories).
We create datasets with 10k abstract pairs per subcategory for training and 1k labeled abstracts per
subcategory for evaluation, ensuring no overlap with training data.
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5 Results

Given our extensive dataset of 40GB of text, which provides the capacity to train a new model from
scratch, we build a custom tokenizer, following the BERT [9] approach with the standard vocabulary
size of 30,523. We initialized the model with random weights corresponding to the BERTbase archi-
tecture [9] and employed a pre-training strategy consistent with the RoBERTa methodology [22].
The training process was conducted with a batch size of 8, a Masked Language Modeling (MLM)
probability of 15%, and a learning rate of 1E-4, using the Adam optimizer [17]. This training was
executed on 32 nodes, each equipped with 4 NVIDIA A100 GPUs at NERSC [2], utilizing PyTorch.
The model was trained across four epochs with a sequence length of 128 tokens, followed by six
epochs with a sequence length of 512 tokens, which takes about 10 hours. We refer to this model
as PhysBERTMLM. Following that we fine-tune [10] our model using Simple Contrastive Learning
of Sentence Embeddings (SimCSE) [12] within the Sentence Transformer [32] framework, using
semantically similar sentence pairs as described in Section 4, with all other sentences in the batch
treated as negatives. We train for 2 epochs using eight A100 nodes which takes about 4 hours. Mod-
els are evaluated on all downstream tasks three times per epoch. After hyperparameter tuning, we
set the learning rate to 2E-4, batch size to 256 per GPU, SimCSE temperature to 0.05, and weight
decay to 0.01, using Adam as the optimizer. The best-performing model across three evaluation
metrics, which we refer to as PhysBERT, is compared against models of particular interest to the
physics community [15, 41, 31, 28, 40] and top MTEB leaderboard models [11], including four
derived from BERTlarge.

The results in Table 1 demonstrate that PhysBERT surpasses existing models on all metrics. Notably,
PhysBERT outperforms even larger models, highlighting its efficiency and superiority in handling
complex physics-related NLP tasks despite its smaller size. Fig. 2 provides a visualization of the em-
bedding space, where PCA is used to project 768-dimensional embeddings of 500 random abstracts
from each physics category into two dimensions, providing a significantly better clustering.

Table 1: Downstream task results for various (uncased) text embedding models. Reported met-
rics include the average V-measure score for category clustering, cosine accuracy score for citation
classification, and normalized Discounted Cumulative Gain at rank 10 (nDCG@10) for information
retrieval. Additionally, the table presents the average V-measure scores for models fine-tuned in the
physics subdomains of Condensed Matter, Astrophysics, and High Energy Physics, along with their
overall average performance.

Cit.Class. Cat.Clust. Inf.Retr. Cond.Mat. Astroph. HEP Avg.
BERT[9] 72.4 36.4 5.0 58.4 65.7 81.9 68.6
bge-base-v1.5[49] 89.5 58.1 46.3 60.0 67.5 84.9 70.8
E5-base[45] 83.4 54.8 52.5 58.7 67.3 82.8 69.6
MiniLM-L6-v2[33] 84.1 54.6 41.6 54.9 63.6 80.2 66.2
mpnet-base[34] 85.3 57.4 39.7 57.1 65.8 83.1 68.7
PACuna[43] 74.6 28.5 6.6 58.2 65.8 82.4 68.8
RoBERTa[22] 64.8 33.1 0.3 55.5 64.9 80.4 66.9
SciBERT[7] 75.5 44.8 4.1 59.7 66.4 85.0 70.4
SPECTER2[38] 83.4 52.0 6.6 60.0 67.2 85.0 70.7
PhysBERTMLM (ours) 60.1 49.1 6.9 60.9 68.5 86.8 72.1
PhysBERT (ours) 94.7 90.3 70.2 68.9 71.5 87.7 76.1
Large Models
E5-large[45] 84.9 56.8 62.9 59.9 68.3 84.1 70.8
UAE-Large-V1[20] 89.7 58.3 50.0 60.3 68.0 85.0 71.1
mxbai-large-v1[19] 89.7 58.2 48.7 59.9 68.1 84.5 70.8
bge-large-v1.5[49] 89.6 58.3 52.3 60.1 67.9 84.1 70.7

We tested the fine-tuning capability of different models on three physics subdomains, training each
model for 1 epoch using a linear learning rate decay. To ensure fair comparisons, we conducted
a grid search to optimize learning rate and batch size within the ranges 1E-4, 2E-4 and 16, 32,
respectively. Performance was evaluated three times during training on category clustering, and
the checkpoint with the highest average V-measure score was reported in Table 1. Our fine-tuned
PhysBERT outperformed other fine-tuned models, achieving the highest average V-measure across
all categories, highlighting its potential as a robust foundation for domain-specific applications.
Notably, PhysBERTMLM, pre-trained only on MLM, outperformed larger reference models, demon-
strating that unsupervised pre-training on a large physics corpus with domain-specific vocabulary
provides a strong foundation for fine-tuning on specialized tasks.
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6 Limitations

One limitation of our work is the reliance on self-created benchmark and training datasets due to
the absence of publicly available physics datasets, which may impact generalizability. Additionally,
while we focused primarily on text-based content, mathematical formulas, which can be important
in certain physics literature, were not specifically addressed in this study.
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A Appendix

A.1 Ethics Statement

In this work, we construct our dataset using metadata and full texts sourced from arXiv in strict
compliance with arXiv’s Terms of Use and ensure that all usage adheres to legal and ethical stan-
dards. We source abstracts where full texts are not open access. Specifically, we ensure that full-text
content, which may be subject to copyright or restrictive licenses, is not used unless explicitly per-
mitted.

We recognize that arXiv preprints serve as a critical platform mainly for early dissemination of
research but come with ethical considerations. Preprints are often unreviewed or evolving, and their
inclusion in training datasets can potentially propagate incomplete or preliminary findings. Users of
models trained on this data should interpret results with awareness of such limitations.

This model is intended solely for scientific and research purposes, with no commercial use or intent
to generate profit. While arXiv papers are submitted under a variety of licenses, our work is driven
by the purpose of advancing scientific knowledge. We acknowledge the complexities surrounding
fair use, particularly in relation to the use of full-text content for model training. In this context, we
assert that the model is used within the boundaries of non-commercial, academic research, aiming
to facilitate further scientific discovery.
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