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Abstract

In this study, we train score-based diffusion models to super-resolve gigaparsec-
scale cosmological simulations of the 21-cm signal. We examine the impact
of network and training dataset size on model performance, demonstrating that
a single simulation is sufficient for a model to learn the super-resolution task
regardless of the initial conditions. Our best-performing model achieves pixelwise
RMSE ∼ 0.57 mK and dimensionless power spectrum residuals ranging from
10−2−10−1 mK2 for 1283, 2563 and 5123 voxel simulation volumes at redshift 10.
The super-resolution network ultimately allows us to utilize all spatial scales
covered by the SKA1-Low instrument, and could in future be employed to help
constrain the astrophysics of the early Universe.

1 Introduction

The Square Kilometre Array [5, 38, SKA] promises tomographic maps of the 21-cm line of neutral
hydrogen along with detailed measurements of summary statistics [12, 31, 1, 27]. The SKA will
consist of two phases SKA1 and SKA2 each covering low (50 − 350 MHz, z ≈ 3 − 27) and mid
(350− 15400 MHz) frequencies. Here, we focus on the spatial scales probed by SKA1-Low, which
will have frequency-dependent primary station beams covering a field-of-view of approximately
∼ 1 cGpc at 100 MHz for z ∼ 10 [23, Sec. 5.3]. Summary statistics of these large cosmological
volumes, such as the 21-cm dimensionless power spectrum, will provide valuable information that can
be used to constrain astrophysical models of the early Universe [e.g. 17, 15, 2, 29]. However, to fully
utilize the information contained in the gigaparsec-scales covered by the SKA1-Low, it is necessary
to simulate correspondingly large cosmic volumes at high resolution [21, 28]. This is complicated
as producing astrophysical parameter constraints typically requires thousands of simulations to
train reliable emulators for inference [2, 29] - which is not feasible, even with state-of-the-art
semi-numerical codes.

The emergence of transformer-based architectures [45] has improved Convolutional Neural Networks
(CNNs) substantially, where diffusion models [42, 18, 43] now beat out Generative Adversarial
Networks [GANs, 16] in image synthesis [6]. Diffusion models have been employed for a range
of tasks including text-to-image generation [e.g. Stable Diffusion, 35, 30], super-resolution [SR,
37, 25], image compression [48] among others. Diffusion models have also been adapted for various
applications in astronomy such as galaxy image simulation [41], gravitaitonal lens reconstruction
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[19], sampling the initial conditions of the Universe [24], super-resolving cosmological density fields
[36], and even conditional generation of 2D 21-cm differential brightness temperature images [49].
Based on their superior performance in image generation tasks and successful application in the
aforementioned cosmological problems, we likewise adopt diffusion models in this study.

In this proof of concept work, we train score-based conditional diffusion models [43] for super-
resolving large 3D cosmological high-resolution (HR) simulations of the 21-cm differential brightness
temperature. The SR emulator is aided by conditional inputs consisting of a low-resolution (LR)
21-cm brightness temperature box, and simulation initial conditions. The generative model will help
us overcome the computational constraints associated with large-scale HR simulations, which will
allow us cover the spatial scales (k-modes) probed by the SKA1-Low.

2 Methods

2.1 Simulations of the 21-cm line

The simulations used in this SR study are semi-numerical simulations of the 21-cm differential
brightness temperature generated by the code 21CMSPACE [46, 8–11, 3, 7, 32–34, 26, 13, 14, 39].
The dataset used in this work consists of 80 HR simulations of 7683 cMpc3 volumes with 2563

voxels each 3 cMpc across. While the simulations cover integer redshifts from z = 6− 49, we focus
on z = 10 and leave redshift conditional generation to a future study. The simulations are all run with
the same astrophysical and cosmological parameters, but different initial conditions. These initial
conditions consists of matter overdensity fields and baryon-dark matter relative velocity fields also
spanning 7683 cMpc3 with 2563 voxels at 3 cMpc resolution. The conditional LR input is generated
from the HR simulations by a trilinear downsampling to 12 cMpc voxels, followed by a trilinear
upsampling to match the other input dimensions. The 80 simulations in the dataset took ∼ 34000
CPU hours to complete (20 CPUs for ∼ 20 hours for each simulation).

Additionally, we run a single large simulation to evaluate the model on the large spatial scales covered
by SKA1-Low. This large simulation covers a 15363 cMpc3 volume with 5123 voxels at 3 cMpc
resolution from z = 6 − 49. In our analysis of the performance across spatial scales, we likewise
choose to focus on z = 10. The large simulation took ∼ 45000 CPU hours (128 CPUs for ∼ 2 weeks
runtime) to run.

2.2 Super-resolution network architecture and training procedure

We train score-based Variance Preserving Stochastic Differential Equation (VP SDE) diffusion models
using the noise-weighted training objective as described in Song et al. [43]. We utilize the improved
DDPM++ architecture for the denoising network, as implemented by Karras et al. [20], adapting
it to handle 3D inputs. The models in this work use 4 residual blocks per resolution, resolution
multipliers 1, 2, 4, 8, and 16 for the number of channels, and self-attention at the 83 and bottleneck
resolution [45, 47]. For sampling, we employ the Euler-Maruyama algorithm with 100 steps for the
reverse diffusion process. While we use the stochastic Euler-Maruyama sampler, the simulated data
in this work does not include any inherent stochasticity. Thus, deterministic sampling methods like
ODE-based solvers could also be explored for inference. However, 21cmSPACE can model stochastic
processes which might benefit from the noise injected at every reverse diffusion step. Hence our
choice of stochastic sampling is compatible with potential future extensions including stochastic
processes in the simulations.

The training procedure for an epoch can be broken down into the following: A 2563 HR simulation is
drawn from the training dataset, along with the corresponding initial conditions. To accelerate training,
each HR cube is split into 8 × 1283 smaller cubes to train on two batches of 4 simulations. The
conditional cubes are normalized by subtracting their mean and dividing by their standard deviation.
As the statistics of the HR cube are unknown in a realistic scenario, the HR target is normalized
to the mean and standard deviation of the downsampled LR cube. Input cubes are augmented by
applying one of 24 unique rotations, increasing the effective size of our training dataset. The HR
cube is attenuated according to the drawn noise level. The initial conditions and LR input are then
concatenated to the noisy HR cube. A forward pass through the model is performed, followed by
backpropagation to update the model weights.
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Figure 1: Left: Models of varying network size (CBM ∈ {4, 8}) trained on 1.25%/35%/70% (1/28/56
models) of the dataset. Right: RMSE distribution of the model with CBM = 8 and trained on 1.25%
of the dataset.

We train models using the Adam optimizer [22] with an initial learning rate of 10−3. After the first
1000 epochs, the learning rate is reduced to 10−4. Validation checks are conducted every 50 epochs
after the model passes 1000 epochs of training. During validation, a 2563 simulation and initial
conditions are drawn from the validation set, and a sample from the model is generated. A checkpoint
is saved if the pixelwise Root Mean Squared Error (RMSE) of the validation sample reaches a new
minimum. The model is trained for ∼ 12 hours on four NVIDIA A100-SXM-80GB GPUs.

3 Results

3.1 Effect of Network and Training Dataset Size

The dataset is split into three different training, validation, and test percentage configurations i.e.:
(training, validation, test)% = (70, 20, 10)%, (35, 55, 10)%, and (1.25, 88.75, 10)%. In terms of
number of simulations for training, validation and testing, this corresponds to (56, 16, 8) simulations,
(28, 44, 8) simulations, and (1, 71, 8) simulations respectively. Additionally, we train two network
configurations – a small network with a channel base multiplier (CBM) of 4, and a large network
with a CBM = 8. With the two different network sizes and the three different dataset splits, a total of
6 models are trained. This setup allows us to examine how the size of the training dataset and the
network architecture impact model performance. Each model is referred to according to the following
convention: e.g. DM8.1 is the diffusion model (DM) with CBM = 8 and a rounded 1.25% data for
training. For the post-training analysis we split the 10% (8 models) test data into 64× 1283 cubes,
and rotate each simulation 24 unique times to effectively evaluate the network on 1536× 1283 boxes.

The left-hand side of Figure 1 shows the 95 percentile confidence interval (CI) for the pixelwise-RMSE
across combinations of network size (CBM) and training dataset size. While the pixelwise-RMSE
decreases with network size (from ∼ 1.2 mK to ∼ 0.6 mK), the overall noise level remains far below
the error margins of current 21-cm experiments specialized in measuring the global 21-cm signal,
such as REACH [4, 25 mK RMSE] and SARAS 3 [40, 213mK RMSE]. Models with CBM = 4
showed higher variance in the pixelwise-RMSE with the training dataset size, however all 95% CIs
overlap significantly, showing no strong dependency on the size of the training dataset. For the larger
networks (CBM = 8), the pixelwise-RMSE variance is smaller and more stable across training
dataset size, suggesting the network performance is independent of the amount of training data.
Hence, training a SR network for a set of astrophysical parameters is computationally feasible as
only a single simulation is required to learn the high-redshift astrophysics regardless of the initial
conditions. The right-hand side of Figure 1 shows the pixelwise-RMSE distribution for the 1536 test
models sampled by DM8.1 along with 68% and 95% CIs. The majority of samples (99.15%) have
RMSE < 0.63 mK while just a few outliers (0.85%) have RMSE ≈ 1.75 mK.

While learning the super-resolution task from a single training simulation is a significant result, it
is worth noting that each simulation contains millions of voxels. The physical size of the training
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Figure 2: Row 1 shows slices from the 21-cm HR 5123, 2563, and 1283 targets. Row 2 shows slices
from sampled models at each scale using DM8.1. Each sample is independently generated from the
model, rather than being zoomed-in sections of the largest cube. Row 3 presents histograms of the
voxel distributions, and Row 4 compares the 21-cm dimensionless power spectrum of HR targets and
SR predictions across different spatial scales.

simulations is large enough to neglect cosmic variance, which means the summary statistics of the
simulations are entirely determined by the astrophysical and cosmological parameters. Since these
parameters are identical for all simulations, this may explain why a single simulation is sufficient to
train a super-resolution network.

3.2 Super-resolving cosmological volumes at different scales

Following the evaluation of model and training dataset sizes, we tested the best-performing model,
DM8.1, across different spatial scales. For this analysis we used a large 15363 cMpc3 simulation as
described in Section 2.1. Figure 2 shows simulation and model slices and statistics for 5123, 2563,
and 1283 spatial scales. Specifically, the rows show target 21-cm HR simulation slices, sampled SR
model slices, histograms of pixel probability distribution functions (PDF), and 21-cm dimensionless
power spectra. It is worth emphasizing that the SR output in each column of Figure 2 is independently
sampled from the model (i.e. the SR row is not simply crop-outs of the larger box). On the largest
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scale DM8.1 achieved an RMSE5123 = 0.57+0.02
−0.02 mK on 24 rotations of the simulated box. To test

intermediate scales, we further divided the large simulation into 8× 2563 cubes, on which DM8.1
achieved an RMSE2563 = 0.56+0.03

−0.01 mK. Finally, on the smallest scale of 1283 (also previously
shown in Figure 1), DM8.1 achieved an RMSE1283 = 0.56+0.05

−0.03 mK. DM8.1 also demonstrated
residuals within the 10−2 − 10−1 mK2 range for the dimensionless power spectrum, ∆2

21, which is
below the expected noise level of SKA1-Low [21].

The pixel histograms in Figure 2 also reveal worse performance around the sharp peak at T21 = 0mK,
which corresponds to fully ionized regions where the 21-cm line is extinguished. In our training
simulations the 21-cm signal is only observed in emission (i.e. T21 ≥ 0). Consequently, one could
explore adding a positivity constraint by learning a quantitiy where e.g. exp(T ∗

21) = T21, which
might reduce some of the observed discrepancies in the PDF in Figure 2. However, in reality and in
the simulations, the 21-cm signal can assume both negative and positive values. The sign of the signal
depends on the interplay between the initial conditions and the astrophysical processes as well as the
redshift and spatial scales observed. As we ultimately aim to develop a methodology that generalizes
across a range of redshifts, including those where T21 can also assume negative values, we do not
adopt any positivity constraints as that would limit the applicability of our approach.

The SR network offers a significant reduction in computational resources taking just 4.7 hours to
sample all 24 unique rotations of the 5123 simulation cube on four NVIDIA A100-SXM-80GB
GPUs.

4 Conclusions and Future Work

In this work, we trained score-based diffusion models to super-resolve gigaparsec-scale cosmological
simulations of the 21-cm differential brightness temperature. We explored the impact of network
architecture and training dataset size on the performance of trained SR networks. We demonstrated
that the model performance in terms of the pixelwise-RMSE is independent of the training dataset
size, i.e. a single simulation is enough to learn the data distribution regardless of the initial conditions.
This is likely due to our training simulation volumes being large enough to neglect cosmic variance,
such that the statistics are solely determined by the astrophysical and cosmological parameters, which
are identical for all simulations. Moreover, we present sub-mK performance for the large models,
which is well within the error margins of current 21-cm experiments [4, 40].

Finally, we examined our best-performing model across a range of spatial scales. We found
RMSE ∼ 0.57 mK across sampled 5123, 2563, and 1283 simulation volumes, and in terms of
the dimensionless power spectrum the residuals were of the order 10−2 − 10−1 mK2, which is
below the expected SKA1-Low noise level [21]. Additionally, our trained models successfully match
the full probability distribution function (PDF) while achieving a low pixelwise-RMSE and low
power spectrum residuals. While we believe jointly demonstrating a low RMSE, matching the power
spectrum and the PDF, constitutes a challenging task in itself, and underscores the capabilities of the
trained models, the model performance could also be evaluated based on higher-order statistics such
as the bispectrum, which we will explore in future work.

In terms of future extensions to this study, training models with varying amounts of conditional
information could also be explored. This could be attempted by systematically removing either of the
initial conditions or the low-resolution input. In this proof-of-concept study, we provide the model
with both the initial conditions and a low-resolution input. For this initial investigation, we considered
the LR inputs essential, as they contain unique information about the astrophysical processes at play.
These processes are independent from the initial conditions and are highly uncertain. Therefore, it
would be extremely challenging - if not impossible - to reconstruct the 21-cm signal from the initial
conditions without providing this extra information.

Finally, future extensions to speed up sampling, and add parameter-conditional generation should be
explored. Faster sampling could be attempted using a methodology similar to Karras et al. [20], and
parameter-conditional generation could be implemented using a latent diffusion model architecture
[44, 35]. Parameter-conditioned super-resolution would allow us to use the largest spatial scales
probed by the SKA1-Low to constrain astrophysical models, and infer the properties of the early
Universe.
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