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Abstract

Gravitational lensing data is frequently collected at low resolution due to instrumen-
tal limitations and observing conditions. Machine learning-based super-resolution
techniques offer a method to enhance the resolution of these images, enabling
more precise measurements of lensing effects and a better understanding of the
matter distribution in the lensing system. In this work, we introduce DiffLense, a
novel super-resolution pipeline based on a conditional diffusion model specifically
designed to enhance the resolution of gravitational lensing images obtained from
the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The diffusion
model, trained to generate Hubble Space Telescope (HST) data, is conditioned on
HSC data pre-processed with denoising techniques and thresholding to significantly
reduce noise and background interference. This process leads to a more distinct
and less overlapping conditional distribution during the model’s training phase. We
demonstrate that DiffLense outperforms existing state-of-the-art single-image
super-resolution techniques, particularly in retaining the fine details necessary for
astrophysical analyses.

1 Introduction

Gravitational lensing, the bending of light from a distant source by a massive object between a source
and the observer, is a powerful tool in astrophysics. Strong gravitational lensing in particular allows
us to study the distribution of dark matter on subgalactic scales but also provides a magnified view
of background sources which serves as a critical probe of the high redshift Universe. For detailed
studies of background sources and the lens itself, high resolution and high quality data is imperative.
However, the number of high-resolution gravitational lensing data available is often limited in number,
largely due to limitations in the capabilities of the observing instruments and adverse observing
conditions. Thus, the generation of high-resolution data is imperative for future detailed studies of
galaxies.

Despite these shortcomings, strong gravitational lensing has already shown significant potential in
uncovering hints about the nature of dark matter through its substructures, evidenced by analyses of
lensed quasars [1, 2, 3], observations from ALMA [4], and extended lensing images [5, 6, 7], among
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others. Indeed, various studies have explored anticipated signatures from ΛCDM and its extensions
to derive information regarding the underlying dark matter distribution, e.g. [8, 9, 10, 11].

Recently, there has been a surge in the use of machine learning to tackle questions in lensing
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] and other scientific domains
[29, 30]. Machine learning is well suited in this context as the analysis of even a single lens
can be quite computationally taxing. Example applications of machine learning in this context
include classification [12, 24, 31], regression [32, 20], segmentation analysis [27], domain adaptation
[13], and anomaly detection [14]. So far, research has predominantly applied these techniques to
simulations, primarily due to the limited availability of strong lensing data. This situation is expected
to improve soon with the commissioning of the Vera C. Rubin Observatory and the launch of Euclid
[33, 34]. Most previous studies have relied on simulation data as a proxy for the absence of plentiful
high quality lenses. One possible work around to this issue is the implementation of super-resolution
techniques applied to plentiful, lower quality data.

Super-resolution techniques, particularly those based on machine learning, have shown promise in
enhancing the quality of low-resolution astronomical images more generally [35, 36, 37].

Traditional super-resolution techniques typically involve learning a mapping from low-resolution
(LR) to high-resolution (HR) images by optimizing a fixed distance function. However, these methods
often struggle to capture the intricate details necessary for astrophysical analysis, as the rigid nature
of fixed distance optimization can lead to the loss of critical structural features.

In this paper, we introduce DiffLense, a novel super-resolution pipeline based on a conditional
diffusion model specifically designed to enhance the resolution of gravitational lensing images
obtained from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) [38]. Our model
leverages high-resolution Hubble Space Telescope (HST) data to condition the diffusion process,
enabling the generation of HR images while preserving fine astrophysical details. The domain-specific
preprocessing pipeline, which includes noise reduction and background suppression, provides a
clearer and more distinct conditional distribution, allowing the model to outperform existing state-of-
the-art single-image super-resolution techniques.

In Sec. 2, we provide a comprehensive overview of the dataset utilized in this study. Sec. 3 details the
models and methods employed in our analysis. We present the main findings in Sec. 4 and conclude
in Sec. 5.

2 Data

We have constructed a dataset containing images of strong galaxy-galaxy gravitational lenses observed
with instruments with different resolution. We compiled a list of lens candidates from the literature
[39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55] and crossmatched them with
archival data. As a low resolution part, we utilized i-band images from the third data release of Hyper
Suprime-Cam Subaru Strategic Program (HSC-SSP), which has resolution of 0.168”/pix. For high
resolution counterparts we searched archival Hubble Space Telescope (HST) data available at MAST
1 and made cutouts from ACS/WFC images in F814W filter with 0.05”/pix resolution. The final
dataset contains 173 objects.

3 Methodology

Diffusion models [56] represent a class of generative models that convert noise into structured outputs
through a Markov chain-based process inspired by non-equilibrium thermodynamics [57]. In the
forward process, Gaussian noise is iteratively added to data, approximating a complex distribution
with simpler ones at each noise level. The reverse process, learned by a neural network, progressively
removes the noise to yield coherent images. For our model, this process is represented as,

xt−1 =
1

√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t, c)

)
(1)

1https://mast.stsci.edu/search/ui/
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Figure 1: Overview of the DiffLense architecture.

where xt represents the data at time step t, αt is the noise scale at step t, and ϵθ(xt, t, c) is the noise
predicted by the network parameterized by θ, conditioned on the low-resolution image c. The model
is conditioned on low-resolution images from HSC, while the high-resolution counterparts from
HST serve as the ground truth. This conditional approach ensures that the generated high-resolution
images retain the astrophysical characteristics of the original low-resolution data.

The denoising of the low-resolution HSC images is crucial for improving the model’s performance.
The denoising pipeline consists of several steps combined into the following process in the approxi-
mate order of their computational complexity:

Idenoised(x, y) = T (NLM (Gσ (Median (I(x, y))))) , (2)

where:

• Median(I(x, y)) is the median filter to remove salt-and-pepper noise,

• Gσ is Gaussian smoothing with standard deviation σ,

• NLM represents Non-Local Means (NLM) denoising, which reduces noise by averaging
similar image patches,

• T is thresholding, setting pixel intensities below a threshold T to zero:

T (I(x, y)) =

{
I(x, y), if I(x, y) ≥ T

0, if I(x, y) < T
(3)

The filtering methods in the preprocessing pipeline were chosen to balance noise reduction and
detail preservation. Median filtering removes salt-and-pepper noise while preserving edges, Gaussian
filtering smooths the image without losing key features, and Non-Local Means (NLM) denoising
averages similar patches to maintain structural integrity. This sequential approach, increasing in
computational complexity, ensures robustness against various noise types, providing clean conditional
inputs for the diffusion model.

In an ablation study included in the Appendix of this paper, we confirmed the importance of our
denoising pipeline, which provided the best results when all denoising steps were applied.

The model architecture is based on a U-Net structure [58], and trained on 2880 pairs of low-resolution
64× 64 HSC images and high-resolution 128× 128 HST images, normalized to the range [−1, 1].
We train the model for 2000 epochs using the Adam optimizer [59] with a learning rate of 2× 10−5

and a batch size of 10. The loss function minimizes the L1 loss between predicted and actual noise,
guiding the reverse diffusion process. A cosine noise scheduler [60] is used for smooth noise scaling
across 1000 timesteps and the model is trained on two NVIDIA Tesla A100 GPUs using the PyTorch
framework [61].
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Figure 2: DiffLense Output Examples w/ Residual Maps. From left to right: HSC input sample,
conditional image, SwinIR output, SwinIR residual map, DiffLense output, DiffLense residual
map, and the ground truth.

4 Results & Discussion

We tested the performance of DiffLense on real gravitational lensing images from the Hyper
Suprime-Cam Subaru Strategic Program (HSC-SSP) and compared it with state-of-the-art convolution
and transformer models such as Residual Dense Network (RDN) [62], Residual Channel Attention
Network (RCAN) [63], SwinIR [64], and HAT [65]. We have used Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM) for quantitative evaluation.

The quantitative results presented in Table 1 show that DiffLense achieved higher PSNR and com-
parable SSIM values, indicating an improvement in both noise reduction and structural preservation.
The reduced SSIM score could potentially be attributed to the misalignment in the intensity range
between the super-resolved images and the ground truth. This discrepancy could be due to the
generative nature of the diffusion model. Unlike other models that directly calculate loss between
predicted and actual images leading to better intensity alignment, the diffusion model clamps the
intensities to a fixed range of [−1, 1] and normalizes them, potentially causing some slight misalign-
ment. Additionally, the model’s reverse process, which iteratively predicts and subtracts the noise
based on the outputs from prior time steps, could lead to the compounding of errors. Inaccuracies
in early steps may escalate, increasing the numerical error observed in later outputs. Although the
SSIM score does not correlate well with the perceived visual quality, the PSNR score is significantly
improved, indicating superior reconstruction quality and reduction of noise.

Table 1: Comparative Performance of Super-Resolution Models

Metric RDN RCAN SwinIR HAT DiffLense
PSNR 32.94286 33.80036 34.63678 34.01312 35.06834
SSIM 0.86701 0.86768 0.86866 0.86565 0.83937

Visual inspection of the super-resolved images as shown in 2 confirms that DiffLense was more
effective in reconstructing fine features of the lensed galaxies, while the other models tended to
oversmooth the output or failed to retain the structural details.

5 Conclusion & Future Work

The application of super-resolution techniques to gravitational lensing images represents a poten-
tially significant advancement in astrophysical imaging. In this study we introduced DiffLense, a
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conditional diffusion model that enhances the resolution of gravitational lensing images by condi-
tioning on pre-processed low-resolution inputs. DiffLense outperformed state-of-the-art models
by preserving fine astrophysical details and reducing noise, making it a powerful tool for lensing
analysis. DiffLense’s modular preprocessing pipeline and generative capabilities make it a suitable
and robust approach for a wide range of applications in astrophysical imaging. For our future work,
we intend to explore score-based diffusion models and time-aware learnable denoising pipelines,
similar to an approach explored by authors in [66] improving over the fixed denoising pipeline in our
current implementation.
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A Ablation Study

In this section, we conduct an ablation study to verify the effectiveness of the denoising pipeline used
for the low-resolution HSC samples. The preprocessing pipeline plays an important role in reducing
background interference and providing a clearer context for the diffusion model. By systematically
isolating individual components of the pipeline, we aim to quantitatively assess the contribution
of each denoising step. We first retrain our model without any kind of denoising of the samples,
followed by applying a single denoising step of either Gaussian filtering or non-local mean (NLM)
denoising, and then compare the results with those obtained using the full denoising pipeline. Our
objective is to demonstrate the necessity of denoising the low-resolution samples and the robustness
offered by applying a stack of filtering steps. The UNet architecture and other model hyperparameters
were kept constant to ensure a fair comparison.

The results of the ablation study are presented in Table 2. Initially, the model was evaluated without
any preprocessing, and the results indicate a noticable compromise in structural integrity and an
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Table 2: Comparative Performance of Different Denoising Steps

Denoising L1 SSIM PSNR
No Denoising 0.0521169 0.77484 32.68117
NLM Denoising 0.0637655 0.79436 32.90603
Gaussian Filtering 0.0426754 0.82149 34.17958
DiffLense Pipeline 0.0393266 0.83937 35.06834

elevated noise level in the output images, underscoring the necessity of preprocessing. Introducing
NLM denoising as a standalone step yielded a modest improvement in the metrics. However, we
noticed that the outputs were inconsistent. While this step produced samples that were close in quality
to those generated using the full denoising pipeline, there were also samples with significantly lower
quality, which resulted in reduced average quantitative metric results. This inconsistency highlights a
lack of robustness when using only the NLM denoising step.

When Gaussian filtering was employed instead of NLM, the model exhibited further improvement in
the metrics, underscoring the Gaussian filter’s effectiveness in smoothing out noise while preserving
critical image features. Lastly, the full denoising pipeline used in our approach achieved the best
results. These findings clearly highlight that the full preprocessing pipeline contributes meaningfully
to the model’s ability to generate super-resolved images and is crucial for optimizing the model’s
ability to accurately preserve structural details and minimize noise.
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