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Abstract

We develop a method to learn the joint posterior of cosmological parameters using
MCMC chains from various experiments by leveraging normalising flow to learn
the density of each chain. These models are quick to train and, once stored, allow
efficient sampling of joint posteriors from any experiment combination. Applied
to test cases in cosmology, the method reveals robust accuracy and precision,
even when known tensions in parameters like σ8 exist. The flow model can also
be used as a prior in likelihood analyses, significantly speeding up inference by
eliminating the need for repeated computationally intensive analyses. Sampling
the joint posterior using pre-trained models takes about 15 minutes, making this
method highly efficient for cosmological studies.

1 Introduction

In Cosmology, numerous publicly available chains for cosmological and nuisance parameters have
been obtained using MCMC-based approaches. The question is whether we can exploit these chains
to perform joint analysis of different probes. A similar concept was investigated by Heavens et al.
(2017a,b), who used publicly available MCMC chains to estimate the marginal likelihood. In this
work, we demonstrate how normalising flows can be employed to learn the probability distribution
of the cosmological parameters alone, effectively marginalising over the nuisance parameters, and
subsequently performing a joint analysis. If we were to take a standard approach, gathering the right
data and doing a principled analysis is not straightforward. Moreover, sampling the joint posterior
would require the computations of many expensive and different power spectra, hence leading to an
overhead of computations.

Normalising flows have been used in various applications in Cosmology. For example, Alsing &
Handley (2021) combined normalising flow models with nested sampling. Recently, Srinivasan et al.
(2024) developed a codebase, flowZ to estimate the Bayesian Evidence from posterior samples.
Normalising flows have also been used in the estimation of Bayesian Evidence via the harmonic mean
estimation (McEwen et al. 2021; Polanska et al. 2024). Our contributions in this work are as follows.

1. We train normalising flow models on separate MCMC chains from different experiments
and use them for joint cosmological analysis.

2. We demonstrate that a pre-trained normalising flow model can serve as a prior in joint
analysis scenarios. This approach is especially beneficial when combining an expensive
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Figure 1: Panel (a) shows the posterior of the cosmological parameters, sampled from the pre-trained
normalising flow (in green) for the DES Y1 analysis. The black contours show the original MCMC
samples. Panel (b) shows the same but for the Planck 2018 MCMC samples. The flow models are
able to capture the different geometry of the high dimensional posterior distribution.

likelihood with a fast normalising flow model, significantly enhancing efficiency for joint
analysis tasks.

2 Bayesian Analysis with Normalising Flows

Normalising flows are a class of generative model which transform simple distributions into complex
ones via invertible functions. They are known for density estimation and sampling and both are
generally quite fast. In Cosmology, we have many MCMC chains which are publicly available and
the question posed is whether we can take advantage of these to learn a density function.

Suppose we have N experiments, each having its own set of cosmological parameters, θi, nuisance
parameters, βi and data xi. For simplicity, we will assume that the we have a common set of
cosmological parameters across all experiments. Let us also assume that we have samples of
{θi, βi}, which are obtained by sampling the posterior of all parameters in each experiment. The
marginalised posterior distribution of the cosmological parameters only correspond to the columns of
the cosmological parameters in a typical MCMC file. In other words,

p(θi|xi) =

∫
p(θi, βi|xi) dβi. (1)

If we were to do a joint analysis among the different experiments, the total dimensionality of the
problem can become large. For example, if we assume we have b cosmological parameters and each
experiment Ei has ci nuisance parameters, the total number of parameters is b +

∑
i ci. Standard

sampling schemes such as Metropolis-Hastings may struggle to learn the full posterior distribution of
all parameters. Furthermore, as we incorporate more experiments into the analysis, it may become
increasingly computationally intensive. Our proposal is to sample the parameters in each experiment
(or use publicly available MCMC chains), followed by data fusion where the approximate joint
posterior is:

p(θ|x1, x2, . . .xN ) = k

N∏
i=1

pnf(θi|xi), (2)
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Figure 2: The figure shows the joint posterior of the cosmological parameters, marginalised over 20
nuisance parameters related to DES Y1. In this particular case, we have used the normalising flow
built upon the public Planck 2018 chains (base_plikHM_TTTEEE_lowl_lowE). The green contours
show the results when using normalising flow models for both experiments while the black contours
show the joint posterior with the DES Y1 likelihood code, with the pre-trained normalising model for
Planck 2018 being used as a prior. See Equation 5.

where pnf(θi|xi) is the learned normalizing flow model for each experiment and k is just a normali-
sation constant. The approximate joint log-posterior is:

log p̂(θ|x1, x2, . . .xN ) =

N∑
i=1

log pnf(θi|xi) + log k. (3)

If we have access to log pnf(θi|xi), we can draw samples from this approximate distribution and we
can also compute the log-density. This is crucial because we can then 1) use the log-density for joint
analysis and 2) use the learned density as a prior in a completely new cosmological data analysis
problem.

3 DES Y1 and Planck 2018

The DES Y1 data consists of 405 band powers data, x1 (García-García et al. 2021). The forward
model consists of 5 cosmological parameters, θ:

θ = {σ8,Ωc, Ωb, h, ns} (4)

and it also has 20 nuisance parameters, β. We first sample the posterior of the cosmological
and nuisance parameters, and we build a normalising flow model on top of the MCMC samples
corresponding to θ. The MCMC samples for Planck 2018 (whose data we denote as x2) are publicly

3



available and different analyses based on different cosmological models have been performed. We
use the base_plikHM_TTTEEE_lowl_lowE MCMC samples to select the subset of cosmological
parameters, θ. Both normalising flow models are trained using 15 000 training points and a learning
rate of 10−3. Training each flow takes around 2 minutes only. Using Equation 3, the joint posterior
of θ due to the two experiments are sampled using EMCEE (Foreman-Mackey et al. 2013).

Next, we also investigate the case where we use the pre-trained normalising flow model for Planck,
pnf(θ|x2) as a prior. Using Bayes’ theorem, the joint posterior distribution of the cosmological and
nuisance parameters (from the DES Y1 likelihood) is:

p(θ, β|x1, x2) ∝ p(x1|θ, β) p(β) p(θ)
[
pnf(θ|x2)

p(θ)

]
. (5)

It is important to weight the normalising flow model by the prior during analysis. We jointly sample
the cosmological and nuisance parameters using the standard Metropolis-Hastings technique. On the
other hand, it is known that obtaining MCMC samples for the Planck data alone, or in combination
with other probes, typically requires several days.

4 Results

Panel (a) and Panel (b) of Figure 1 show the original MCMC samples in black and the normalising
flow samples in green. Sampling from the normalising flow model is straightforward and very quick.
This process involves drawing samples from the base distribution, p(z), and mapping them to the
cosmological parameters through a series of bijective transformations. Figure 1 also shows that the
flow models can robustly learn the complex joint posterior of the cosmological parameters only, that
is, p(θ|xi).

Figure 2 shows the joint posterior of the cosmological for the joint analysis of DES Y1 and Planck.
For any test point, θ∗, we can compute the log-density from each pre-trained normalising flow model.
Hence, sampling from the joint distribution is possible via Equation 3. We generate 120 000 MCMC
samples in around 15 minutes only and the samples are shown in green in Figure 2. On the other
hand, if we couple the Planck normalising flow to the DES Y1 likelihood for a joint analysis of
DES Y1 and Planck, the sampling procedure takes around 5 hours and the samples are shown by
the black contours. The fact that both contours (green and black) lie almost on top of each other
demonstrates the robustness of the method proposed in this work. In order to quantify the difference
between the two distributions, we have also computed, δq = |µ−µ̂|√

σ2+σ̂2
, which quantifies the relative

tension between the two distributions. The smaller the number the smaller the difference between the
distribution in 1D. The minimum and maximum δq are 0.05 and 0.16, corresponding to ns and σ8

respectively.

5 Challenges

A particular challenge we encountered in this work is to re-run the Planck likelihood for a direct
comparison of the method in different combination of experiments. A single MCMC run of Planck
takes ∼ 25 days, which is also a motivation for developing the method described in this work.

6 Conclusion

In this study, we demonstrated the importance of normalising flow models, trained on existing MCMC
samples, for deriving cosmological parameter constraints in a joint analysis of various probes. The
method is not only robust to shifts and expansions of the posterior, ensuring precision and accuracy,
but it is also very fast. We have also trained normalising flow models on other MCMC samples,
demonstrating that the joint posterior obtained using two flow models is comparable to that from
explicitly sampling the joint posterior with MCMC methods. Additionally, we have built a library of
normalising flow models based on public MCMC chains ranging from large-scale structure, CMB,
and BAO experiments such as DES Y3, KiDS-1000, ACT DR4, and SDSS. Users can easily load
these pre-trained models for joint analysis by sampling multiple flows together or by integrating the
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flows with their own likelihood code. Furthermore, users can quickly train their own normalising
flow models. We hope this work will facilitate various upcoming cosmological analyses and enable
the generation of MCMC samples for joint analyses in under an hour.
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