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Abstract

We present an accelerated pipeline, based on high-performance computing tech-
niques and normalizing flows, for joint Bayesian parameter estimation and model
selection and demonstrate its efficiency in gravitational wave astrophysics. We
integrate the JIM inference toolkit, a normalizing flow-enhanced Markov chain
Monte Carlo (MCMC) sampler, with the learned harmonic mean estimator. Our
Bayesian evidence estimates run on 1 GPU are consistent with traditional nested
sampling techniques run on 16 CPU cores, while reducing the computation time by
factors of 5× and 15× for 4-dimensional and 11-dimensional gravitational wave in-
ference problems, respectively. Our code is available in well-tested and thoroughly
documented open-source packages, ensuring accessibility and reproducibility for
the wider research community.

1 Introduction

In many scientific fields Bayesian inference is an indispensable tool for extracting new knowledge
from observations, providing a principled statistical framework for parameter estimation and model
selection. In Bayesian statistics, the posterior probability distribution p(θ | d,M) encodes information
about the parameters θ, of model M , given the observed data d. By Bayes’ theorem the posterior is
given by

p(θ | d,M) =
p(d | θ,M)p(θ |M)

p(d |M)
, (1)

where p(d | θ,M) is the likelihood, p(θ |M) the prior and p(d |M) ≡ z the Bayesian evidence. The
likelihood quantifies how well a model and a given set of parameters θ describe the data. The prior
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reflects our existing beliefs about the parameters. Typically, Markov chain Monte Carlo (MCMC)
sampling techniques are used to explore the posterior distribution for parameter estimation, from
which parameter estimates and their uncertainties can be computed. The Bayesian evidence z, also
called the marginal likelihood, is a normalization factor and is computed as

z = p(d |M) =

∫
dθ p(d | θ,M)p(θ |M). (2)

The evidence is a crucial quantity for comparing competing models, allowing us to provide a
statistically principled preference for one model over another [1]; although, it is computationally
difficult to calculate.

One particular scientific field that heavily relies on Bayesian inference is gravitational wave (GW)
astrophysics. Since 2015, Advanced LIGO [2] and Advanced Virgo [3] have detected O(100) GW
signals originating from mergers of black holes and neutron stars [4–7], revealing a novel and reliable
way of observing and studying the Universe. Evidence estimates have allowed, for instance, one to
identify the nature of sources of GWs [8] and discern between various waveform models encoding
different underlying physics [9], thereby advancing our understanding of GW sources.

Nested sampling algorithms [10, 11] are widely used to compute the Bayesian evidence. However, this
method of estimation is tightly coupled to the sampling strategy, inhibiting the adoption of accelerated
sampling techniques. The sampling must be performed in a nested manner, which means these
methods can be computationally expensive, especially for high-dimensional parameter spaces and
multimodal posteriors. A fast and scalable alternative is therefore of paramount importance for various
scientific disciplines. In GW astrophysics, for instance, telescope operators require information
regarding the nature of the source in low latency to identify potential electromagnetic counterparts
of GW events. Moreover, next-generation GW detectors, such as the Einstein Telescope [12] and
the Cosmic Explorer [13], will have increased sensitivities which result in longer signal durations
and more events to analyze, enhancing the demand for efficient inference methods [14]. Previous
attempts have accelerated nested sampling algorithms using machine learning [15, 16] or make use
of simulation-based inference [17–25].

Recently, the JIM1 inference toolkit [26] was introduced, which accelerates parameter estimation
by using normalizing flow-enhanced MCMC sampling as well as hardware accelerators such as
graphical processing units (GPUs) and tensor processing units (TPUs). However, MCMC methods
like JIM do not provide the Bayesian evidence, which is necessary for Bayesian model selection.
In this work, we augment JIM with a scalable evidence estimator decoupled from the sampling
method – the learned harmonic mean estimator with normalizing flows [27, 28], implemented in the
harmonic Python package2. Since, unlike nested sampling, the learned harmonic mean is agnostic
to the sampling strategy, it is possible to realise the acceleration provided by JIM and still perform
accurate evidence estimation. Other methods of evidence estimation decoupled from the sampling
strategy have been recently proposed [29–31], but we choose the learned harmonic mean due to
several advantages discussed in depth in Refs. [28, 32]. We demonstrate, using an example from the
field of GW astrophysics, that our pipeline provides accurate evidence estimates while only requiring
a fraction of the computational cost required by the traditional methods.

2 Methodology

We construct an accelerated pipeline to, first, sample the posterior distribution and, second, compute
the Bayesian evidence. We leverage normalizing flows, at both the sampling and evidence estimation
stages. Moreover, we use a sampler that leverages the high-performance computing techniques of
JAX [33].

2.1 Normalizing flows

Normalizing flows are generative models that transform a simple base distribution into a complex
one through a series of invertible, differentiable mappings with learned parameters. The flow can be
trained on samples from the distribution of interest by minimising the forward Kullback-Leibler (KL)

1https://github.com/kazewong/jim
2https://github.com/astro-informatics/harmonic
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divergence. For a more extensive review of normalizing flows we refer the reader to references [34, 35].
Both JIM and harmonic use rational-quadratic spline flows [36], where piecewise rational-quadratic
functions are used in the transformations. They are able to encode nonlinear and local relationships,
allowing for a more expressive and powerful architecture than affine transformations [37].

2.2 JIM inference toolkit

In Ref. [26], the authors introduced JIM, an inference toolkit implemented in JAX [33], and applied
it to GW astrophysics as an example. JIM supports GPU-accelerated differentiable gravitational
waveform models [38] and can therefore make use of efficient gradient-based samplers such as the
Metropolis-adjusted Langevin algorithm [39] or Hamiltonian Monte Carlo [40]. In order to further
accelerate the parameter estimation, JIM makes use of FLOWMC3 , a normalizing flow-enhanced
MCMC sampler implemented in JAX [41, 42]. It accelerates traditional MCMC by adapting a global
proposal density distribution to the target distribution with normalizing flow on the fly. It has been
shown that JIM can accurately infer the parameters of GW signals originating from merging black
holes [26] and neutron stars [43]. Moreover, JIM achieves this at a fraction of the computational cost
of conventional methods that nested sampling, e.g. BILBY [44–46]. However, previously JIM could
not provide evidence estimates for model comparison.

2.3 Learned harmonic mean estimator

To compute the Bayesian evidence from posterior samples, we consider the recently proposed learned
harmonic mean estimator [27, 47, 28, 32]. The learned harmonic mean is a scalable estimator of the
evidence based on posterior samples, which is therefore agnostic to the sampler used and can be
integrated with the FLOWMC sampler used in JIM. While the original harmonic mean estimator [48]
suffered from instability [49], the learned harmonic mean solves this issue by leveraging machine
learning techniques [27]. The reciprocal evidence ρ = z−1 is estimated as

ρ̂ =
1

N

N∑
i=1

φ(θi)

p(d | θi,M)p(θi |M)
, θi ∼ p(θ|d,M), (3)

where N is the number of samples and φ(θ) is a learned normalized target distribution that must be
concentrated within the posterior. Recently, the authors of Ref. [28] integrated normalizing flows
into the learned harmonic mean estimator, which provide a robust approach to ensure the learned
target distribution is indeed concentrated within the posterior. Specifically, a temperature parameter
is introduced to scale the variance of the base distribution of the flow by a factor 0 < T < 1. The
concentrated flow is then used as the target φ(θ). The authors show that the estimates are robust to
different values of T . The method is implemented in the harmonic package written in JAX.

The posterior distributions encountered in GW physics are often multimodal, which can prove
challenging. In particular, due to the topology-preserving nature of their transformations, normalizing
flows tend to struggle with multimodality [50], and are prone to mode-covering behaviour when
trained using forward KL divergence [51]. These problems are mitigated by the fact that for the learned
harmonic mean estimator to be accurate, it is not necessary to achieve a very close approximation
of the posterior [27]. However, a poor approximation can potentially be problematic if it leads to
regions of high flow density in regions where posterior density is low. To facilitate the learning of the
multimodal distributions, we consider a multimodal base distribution (a sum of normal distributions
with an identity covariance matrix), which leads to an improvement in harmonic diagnostics. In
future work we plan to investigate in detail our method’s robustness to multimodality, including
for GW events with a low signal to noise ratio, by numerically studying the influence of the base
distribution choice, as well as considering other flow approaches designed to deal with multimodality
[e.g. 52, 53, 50, 54].

3 Results

We validate and benchmark our pipeline, combining JIM with harmonic, by computing the Bayesian
evidence of a simulated GW signal from a binary black hole merger as an example. The signal is

3https://github.com/kazewong/flowMC
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Table 1: Total wall times to compute the evidence estimates for the examples discussed in the main
text. We run BILBY on 16 CPU cores and JIM + harmonic on 1 GPU.

Example Method log(z) Sampling time Evidence estimation time

4D BILBY 390.33± 0.11 31.3 min –
JIM + harmonic 390.360+0.006

−0.006 3.4 min 1.9 min

11D BILBY 378.29± 0.15 3.5 h –
JIM + harmonic 378.420+0.09

−0.08 11.8 min 2.4 min

(a) BILBY (b) JIM + harmonic

Figure 1: Corner plots for the 4-dimensional posterior samples from (a) BILBY and (b) JIM used for
inference (solid red) alongside the concentrated flow at T = 0.8 used in the learned harmonic mean
(dashed blue).

injected into a realization of a Gaussian noise time series coming from a network of the two Advanced
LIGO [2] and the Advanced Virgo detector [3] at their design sensitivities. The recovery of the
injected signal is performed in two examples. In the first example, we only recover the 4-dimensional
intrinsic parameter space, comprising of the masses and the aligned spins of the systems, while fixing
other parameters to their injected values. In the second example, we recover the full 11-dimensional
parameter space, which includes the extrinsic parameters. The setup of these inferences in described
in detail in Appendix A.

For both examples, we compute the Bayesian evidence with nested sampling, and with JIM combined
with harmonic. For the former, we use BILBY [44], employing DYNESTY [55] as the nested sampling
library. More specifically, we use PARALLEL-BILBY [46] and parallelize the computation with 1000
live points over 16 cores on a single Intel Xeon Silver 4310 Processor central processing unit (CPU).
For JIM and harmonic, we use a single NVIDIA A100-40GB GPU to perform the inference.

When estimating the evidence with harmonic from the JIM posterior samples, we divide the samples
into two sets with an equal number of chains, using one to train the flow and the other to estimate the
evidence. The samples are thinned, keeping only every tenth sample in each chain, which achieved
an accurate estimate at reduced time and memory demands.

As an additional check we also estimate the evidence on posterior samples obtained from nested
samples via rejection sampling with BILBY. We randomly shuffle these posterior samples, as the
output contains more samples from higher density regions towards the end, introducing bias into the
train–inference split. Then we divide them into 20 chains before using harmonic. We obtain results
consistent with nested sampling evidence estimates.

The evidence estimates for the 4-dimensional example along with their computation times are shown
in the first two rows of Table 1. We use a rational-quadratic spline flow with 6 layers and 8 spline
bins and a unimodal base in the learned harmonic mean estimator, and set the temperature parameter
to T = 0.8. We find that the evidence estimates obtained using BILBY are in close agreement
with our estimates obtained from JIM samples with harmonic. However, our pipeline achieves a
speedup factor of 5.4× relative to BILBY at performing this calculation even for this relatively low
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dimensional example. Figure 1 shows corner plots of BILBY samples as as well as the half of JIM
samples used for inference, alongside the concentrated flow of harmonic. The plot shows visual
agreement between JIM and BILBY, and demonstrates that the flow of harmonic is concentrated in
the posterior of JIM. We perform additional sanity checks, described in [27] to further validate the
results of the learned harmonic mean. In particular we inspect the estimates of error, kurtosis and the
ratio between the square root variance of variance and variance estimates.

We repeat the same procedure for the 11-dimensional example. We use the same thinning procedure
and employ 5 layers with 64 bins for the rational-quadratic spline flow. Because the multimodal
features are more pronounced in this posterior, we use a multimodal base consisting of three normal
distributions with an identity covariance matrix, one centered at 0 in all dimensions, one centered
at 0 except for dimensions ϕc, ψ centered at 1, and finally one centered at 0 except for ϕc, ψ, α, δ
centered at 2. This heuristic choice introduces the underlying multimodality into the flow at the start
of the training and results in improved diagnostics. The results of this analysis are shown in the last
two rows of Table 1, with the corner plots shown in Appendix B. Evidence estimates are again in
close agreement. However, our pipeline is 14.8× faster than BILBY.

4 Conclusions

In this work we have constructed an end-to-end pipeline that accelerates Bayesian inference, including
both parameter estimation and also model selection. Our pipeline combines the efficient MCMC
sampling of JIM with the learned harmonic mean estimator implemented in harmonic to compute
the evidence. To demonstrate the effectiveness of our pipeline, we applied it to a simulated GW event
and inferred its 4-dimensional intrinsic and complete 11-dimensional parameter spaces. We have
shown that our pipeline provides accurate evidence estimates at only a fraction of the time required
by traditional methods, with a speedup of 5.4× and 14.8× for the 4- and 11-dimensional examples
respectively. In future work, we aim to further investigate the optimal treatment of multimodal
distributions, exploring the various approaches proposed in literature [e.g. 52, 53, 50, 54], and apply
the methods presented here to real data of observed GW events. Both JIM and harmonic are open-
source, well-documented and tested. Therefore, the pipeline introduced in this work can directly be
applied in other scientific fields relying on Bayesian inference.
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Parameter Description Injected value Prior
M detector-frame chirp mass [M⊙] 60 [25, 100]

q mass ratio m2/m1 0.65 [0.125, 1]

χ1 first component aligned spins 0.12 [−0.99, 0.99]

χ1 second component aligned spins 0.53 [−0.99, 0.99]

dL luminosity distance [Mpc] 2500 [500, 4000]

tc coalescence time [s] 0 [−0.01, 0.01]

ϕc coalescence phase 0.4 [0, 2π]

ι inclination angle 2.5 [0, 2π]

ψ polarization angle 0.4 [0, π]

α right ascension 2.5 [0, 2π]

δ declination 2.5 [0, 2π]

Table 2: Description of the parameters used in the GW simulations, their injected value and uniform
prior ranges.

A Setup of simulated gravitational wave signal

The source parameters θ of a GW signal are inferred from the data by computing their posterior
distributions. We set the duration of the simulated signal considered in this work to 4 seconds and
analyze the signal in the frequency domain, setting the frequency range to [20, 2048] Hz. We use the
GW approximant IMRPhenomD [56, 57] for injecting and analysing the signal.

In Tab. 2 below, we provide the parameters used in the GW simulations and the values chosen for the
simulated signal. All priors used in the analyses are uniform priors in the ranges shown in Tab. 2.
We adopt the standard convention that m1 refers to the heavier black hole and m2 to the lighter
black hole of the binary system such that the mass ratio q = m2/m1 is bounded above by 1. When
given a GW, represented as time series d(t) and a gravitational waveform model h(t;θ), with θ the
parameters of Tab. 2, the likelihood function is given by

log p(d | θ,M) = −1

2
⟨d− h(θ), d− h(θ)⟩+ normalization constant

= ⟨d, h(θ)⟩ − 1

2
⟨h(θ), h(θ)⟩ − 1

2
⟨d, d⟩+ normalization constant.

(4)

Here, the noise-weighted inner product ⟨a, b⟩ is defined as

⟨a, b⟩ = 4Re
∫ fhigh

flow

df
ã(f)b̃∗(f)

Sn(f)
, (5)

with Sn(f) representing the one-sided power spectral density (PSD), the asterisk symbol denoting
complex conjugation and x̃(f) representing the Fourier transform of a time series x(t).

As shown in Eq. 5, the ⟨d, d⟩ term and the normalization constant do not depend on the source
parameters θ, which is often neglected in analyses, e.g., in JIM. The Bayesian evidence obtained
with such convention is then equivalent to the Bayes factor of the signal hypothesis against the noise
hypothesis, thus the Bayes factor quoted by BILBY.
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B Corner plot for the 11D example

(a) BILBY

(b) JIM + harmonic

Figure 2: Corner plots for the 11-dimensional posterior samples from (a) BILBY and (b) JIM used for
inference (solid red) alongside the concentrated flow at T = 0.8 used in the learned harmonic mean
(dashed blue).
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