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Abstract

Jet tagging is a classification problem in high-energy physics experiments that
aims to identify the collimated sprays of subatomic particles, jets, from particle
collisions and ‘tag’ them to their emitter particle. Advances in jet tagging present
opportunities for searches of new physics beyond the Standard Model. Current
approaches use deep learning to uncover hidden patterns in complex collision
data. However, the representation of jets as inputs to a deep learning model have
been varied, and often, informative features are withheld from models. In this
study, we propose a graph-based representation of a jet that encodes the most
information possible. To learn best from this representation, we design Particle
Chebyshev Network (PCN), a graph neural network (GNN) using Chebyshev
graph convolutions (ChebConv). ChebConv has been demonstrated as an effective
alternative to classical graph convolutions in GNNs and has yet to be explored in
jet tagging. PCN achieves a substantial improvement in accuracy over existing
taggers and opens the door to future studies into graph-based representations of
jets and ChebConv layers in high-energy physics experiments.

1 Introduction

The Large Hadron Collider (LHC) at CERN is a high-energy particle accelerator that collides particles
to detect novel physics findings, such as the Higgs boson discovery [1, 2]. As proton-proton collisions
continue in higher luminosity phases, more data will be available for research beyond the Standard
Model. Machine learning is crucial for analyzing collider physics data, with jet tagging—a process to
identify the elementary particle initiating a jet—being a primary application. This is essential for
studying particle properties and interactions.

A key challenge in jet tagging is developing an expressive jet representation that captures complex
inter-particle relationships. Representing jets as particle clouds [3–19], ordered sequences, and
images [20–38] have been explored, with particle clouds and graph-based representations showing
the most success. These have been with graph neural networks (GNNs) and transformer architectures,
which outperform non-geometric methods like CNNs, RNNs, and MLPs. Particle clouds preserve
permutation, rotational, and translational invariance but lack explicit modeling of inter-particle
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relations. In contrast, graph-based representations incorporate relational features through nodes
and edges, with graph convolutions synthesizing information across spatial scales. A notable
advance in GNNs is the Chebyshev graph convolution (ChebConv) [39], which primarily prevents
the explosion of the graph laplacian when raised to the ith power in a given convolutional filter.
The usage of ChebConv in graph convolutional networks was shown to be effective in different
tasks [39–41], and its usage in jet tagging has yet to be explored. Our main contributions are a
graph-based jet representation with comprehensive particle-level features and the use of Chebyshev
graph convolutions to enhance model performance.

2 Methodology

We extend existing methodologies, notably Chebyshev graph convolutions and other prominent graph
neural networks in building PCN.

2.1 Graph Construction

A jet j is a collimated spray of subatomic particles from a collision, defined by its constituent
particles ji = {x1, . . . ,xn}, where n is the number of particles in the jet. Each particle xi within a
jet is represented as a vector of features xi = {f1, . . . , f16}, where f is one of the 16 features. We
represent each jet as a graph G = (V,E), where V is the set of vertices representing particles and
E is the set of edges defined by a k-Nearest Neighbors (kNN) algorithm. The Euclidean distance
between any two particles xi and xj is computed as:

dij = ∥xi − xj∥2 =

√√√√ 16∑
k=1

(fik − fjk)2

The set of k-nearest neighbors for each particle xi is determined by selecting the k particles with the
smallest distances dij , forming the set:

Nk(xi) = {xj ∈ j | j ̸= i and dij is among the smallest k distances}

The adjacency matrix A for the graph is then constructed as:

Aij =

{
1, if xj ∈ Nk(xi) or xi ∈ Nk(xj),

0, otherwise.

The parameter k balances local and global feature capture: lower k values result in sparser graphs,
emphasizing localized interactions but potentially missing broader relationships. Higher k values
create denser graphs but may introduce noise from weaker particle correlations. We use the elbow
method to optimize k, evaluating the performance of downstream tasks (e.g., classification accuracy
or clustering quality) against varying k values. Based on this analysis, we select k = 3 as a trade-off
between sparsity and representational power. The Scipy cKDTree algorithm is used to efficiently
identify the nearest neighbors and form graphs as adjacency matrices [38]. The split dimension d∗

used in this algorithm is chosen as:

d∗ = argmax
d

(max(xid)−min(xid)) ,

where xid refers to the d-th feature of particle xi within the current node of the tree. The split value
is then set to the median of the d∗-th feature across particles in the node:

Split value = median({xid∗ | xi ∈ node}).

Our approach differs from others by providing more features per node, which empirically enhances
the models’ ability to learn expressive interactions between features.
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Figure 1: (left): graph neural network classification pathway of input graphs to PCN and PCN-Lite.
(right): the network architectures of PCN and PCN-Lite.

2.2 Model Architectures

Our models, Particle Chebyshev Network (PCN) and the streamlined PCN-Lite, leverage Chebyshev
Convolutional layers to process the constructed graphs. Figure 1 illustrates the model architectures.

Chebyshev Graph Convolutions We first process the graph-based representation of a jet, G ∈
RN×d, where N is the number of particles and d is the dimensionality of node features. In each layer
ℓ, the graph G undergoes Chebyshev graph convolutions, applying learnable filters across nodes
based on their local neighborhood.

Consider the 16-dimensional particle cloud consisting of N particles, which is then converted into a
graph using the method explained in Section 2.1. A general graph convolutional operator is defined
as x′ = pw(L)x, where x is the feature vector of the graph and pw(L) is a polynomial of form:

pw(L) =

d∑
i=0

wiL
i (1)

where w is a learnable parameter representing the weight of the polynomial term. The weights are
learned during training to adapt the operator to the graph data. For any given feature vector x, it is
convolved with its neighboring nodes such that the fully expanded operator is:

x′
v =

d∑
i=0

wi

∑
u∈N(v)

Li
u,vxu (2)

where N(v) is the neighboring nodes of the convolved xv. The Chebyshev convolutional operator
differs from this by passing the normalized graph laplacian through a Chebyshev polynomial to create
filters of the form:

pw(L) =

d∑
i=0

wiTi(Lnorm) (3)

Ti is the ith Chebyshev polynomial computed with initial conditions T0(x) = 1, T1(x) = x and
definition:
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Ti(x) = 2xTi−1 − Ti−2x. (4)

Lnorm is the normalized graph Laplacian defined as:

Lnorm =
2L

λmax
− I (5)

where λmax is the largest eigenvalue of L and I is the identity matrix. The Chebyshev polynomial
offers computational efficiency by approximating certain graph operations without fully diagonalizing
the Laplacian, which becomes infeasible at large scales of data.

The local neighborhood N(v) for convolution is determined by the K polynomial, Kk(x), defined
as the difference between the kth and (k − 2)th Chebyshev polynomials. ChebConv outperforms
classical graphical convolutions by preserving local graph structures and mitigating oversmoothing.

Edge Convolutions Edge convolutional operators follow Chebyshev convolutions in PCN to capture
global jet structures. At its core, EdgeConv utilizes two sets of independently learnable parameters to
encode global shape information and local relational information between nodes resulting in its fully
expanded form:

x′
i = maxj∈N(i)Θ · (xi − xj) + Φ · xi (6)

where Φ and Θ are independently learnable sets of weights.

3 Dataset

We use the JETCLASS dataset with 100M jets for training, 5M for validation, and 20M for testing,
featuring ten evenly distributed jet types. A 1M jet sample suffices for training, with no performance
gain from larger samples. We split these 1M jets into 800k/100k/100k for training, validation, and
initial testing. Final metrics come from the full 20M jet test set. Training employs the AdamW
optimizer [4] with a 1e-3 learning rate for up to 500 epochs, with early stopping if validation loss
improvement is less than 0.0001 over 10 epochs.

4 Results

We trained and tested three related models: PCN-Edge (five layers of EdgeConv with no ChebConv
layers), PCN-Inverse (three layers of EdgeConv interleaved with two layers of ChebConv), and
PCN-Cheb (five layers of ChebConv with no EdgeConv layers). This analysis supports the motivation
for interleaving EdgeConv layers between ChebConv layers, as summarized in Table 1.

Table 1: Accuracies of related PCN models on the 9 signal classes in the JETCLASS dataset.

Macro- H→bb H→cc H→gg H→4q H→lvqq’ t→bqq’ t→blv W→qq’ Z→qq
Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc

PCN-Edge 0.891 0.887 0.881 0.890 0.870 0.889 0.907 0.929 0.887 0.869
PCN-Inverse 0.873 0.864 0.873 0.876 0.853 0.876 0.881 0.892 0.880 0.857
PCN-Cheb 0.853 0.822 0.858 0.856 0.839 0.860 0.856 0.876 0.810 0.869

PCN 0.942 0.951 0.929 0.923 0.929 0.981 0.961 0.987 0.920 0.900
PCN-Lite 0.936 0.950 0.923 0.917 0.919 0.973 0.957 0.984 0.914 0.892

PCN and PCN-Lite significantly outperform related models, highlighting two key conclusions. First,
the interleaved configuration of ChebConv and EdgeConv layers in PCN enhances performance by
balancing local and global feature learning. Second, adding more layers does not improve accuracy
and may hinder the model’s ability to capture complementary features.

We additionally compare the performances of PCN and PCN-Lite with four baseline models trained
on the JETCLASS dataset: PFN [6], P-CNN [42], ParticleNet [5], and ParT [3]. The Particle Flow
Network (PFN) architecture is based on the Deep Sets framework proposed by Zaheer et al. [43]. The
P-CNN architecture was used in the CMS experiment by the DeepAK8 algorithm [26]. ParticleNet
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follows a dynamic graph convolutional neural network similar to PCN using only EdgeConv layers
[5]. Particle Transformer (ParT) is the state-of-the-art tagger utilizing a transformer architecture [3].
Table 2 summarizes the comparison of accuracy and AUC with the baseline models.

Table 2: Comparison of model performances on the JETCLASS dataset.

Macro- Macro-
Accuracy AUC

PFN 0.772 0.9714
P-CNN 0.809 0.9789

ParticleNet 0.844 0.9849
ParT 0.861 0.9877

PCN-Lite 0.936 0.9400
PCN 0.942 0.9500

We conclude that PCN significantly improves upon the state-of-the-art accuracy set by ParT by
8.1%. PCN-Lite also improves upon ParT and other taggers in accuracy by a notable amount. The
improvement in accuracy indicates a reduced number of misclassifications by PCN and PCN-Lite.
Both models report lower AUC’s than ParT and other taggers, but when contextualized to specific
classes, the high AUC in conjunction with improved accuracy leads to a substantial improvement
in discriminative power. This is particularly true for the H→4q jets and Z→qq jets, in which PCN
achieves near perfect AUC.

5 Discussion

In this work, we propose two effective graph neural networks, PCN and PCN-Lite, combining
Chebyshev graph convolutions and edge convolutions, achieving state-of-the-art accuracy on the
JETCLASS dataset. Future research could explore using ChebConv with other graph convolutional
layers or attention mechanisms for jet tagging. For more comprehensive comparisons of network
performance, fine-tuning for training and testing on the top quark tagging dataset [44] and quark-gluon
tagging dataset [45] would be an interesting domain to explore.
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