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Abstract

As satellites are progressively deployed to operate at lower orbital heights, the
assumption of a constant drag for mission planning and satellite design will not
hold up well. Expensive numerical simulation of satellite aerodynamic forces
may be necessary to provide accurate estimations, especially at low altitudes
(< 500km). To alleviate these data requirements in building surrogate models, a
physics-informed pre-training strategy is explored to embed theoretical baselines
within predictions. From the assumption of free-molecular flow, residual-learning
of the rarefield aerodynamics can first serve as a form of low-fidelity approximation,
before sparsely learning a corrector towards the ground truth. Under data-scarce
conditions, the proposed approach outperformed models trained using only data or
only physics, in terms of prediction accuracy.

1 Introduction

Over the years, the benefits and challenges surrounding satellite operation at very low Earth orbit
(VLEO) are becoming better understood, and technological progress has gradually enabled its feasible
implementation [3]. At such low altitudes, the influence of atmospheric density is no longer negligible,
hence raising the need for accurate force estimations. While these can be realized through numerical
simulations, the costs can be steep. In satellite mission planning and design, numerous sequential
evaluations are required to accomplish orbit propagation over an operational lifetime. Conducting
iterative shape and structural design over a single operating condition, or even optimized over the
entire trajectory, compounds the computational demands. Various approaches have been explored to
circumvent this, such as simplifying the geometry [2], optimizing in two-dimensions [4], selectively
omitting physics [10], or developing general shaping strategies [5], with each presenting some form
of trade-off in accuracy.

While surrogate modelling can relieve these costs, sufficient data is still required to construct accurate
and generalizable prediction models. As such, a physics-informed pre-training strategy is explored to
improve model accuracy under such data-scarce conditions. The use of machine-learning in enhancing
physical analysis has been demonstrated to be achievable through careful integration [19, 21, 6].
In particular, pre-training strategies that tap on transfer-learning between related distributions have
shown to be particularly effective in scientific tasks [9]. In this work, a theoretical baseline is provided
to support the predictions of the ground truth satellite aerodynamic forces. By pre-training through
residual-learning of a theoretical free-molecular flow, the aerodynamic forces can be approximated
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in a low-fidelity context and without any simulation data. The embedding of this physics-informed
baseline enables a corrector to be learned from sparse simulation samples. The proposed approach is
visualized in Figure 1.

Figure 1: Schematic of the proposed embedding of a theoretical baseline to estimate surface forces
of a satellite. By discretizing the satellite surface into a compilation of flat panels, a baseline model
can be pre-trained to approximate local forces by directly minimizing the residuals describing free-
molecular flat plate theory, without any ground truth samples. Masking the local panels using its
relative position forms a globally-adjusted approximation. The corrector model is then trained from
scarce samples to correct the approximation towards the ground truth distribution.

2 Methods

2.1 Numerical Experiments

Orbital Trajectory. As a toy problem, the satellite is projected on a circular, sun-synchronous
orbit with a mean orbital altitude of 200 km, approximately 16 orbits per day, and inclination of
96.3° estimated using the J2 algorithm [8]. Only 24 hours of the flight path is used in the present
analysis, and discretized into Nt = 1440 minutes of simulation data. The satellite moves at a constant
orbital velocity V∞ through each discretized point of the flight path, in which the environment is
described by the atmospheric temperature T∞, number density ρN , and mass fractions mi of the four
primary atmospheric constituents, i.e., i = {N,O,N2,O2}. These conditions are obtained from the
NRLMSISE-00 atmospheric model [12] using referenced F10.7 solar flux and magnetic indices [20].
As visualized in Figure 2 , four arbitrary maneuvers are prescribed onto the flight path consisting of
pitch φ and yaw κ rotations towards ±40° with each lasting around 35 minutes.

Satellite Forces Analysis. The ground truth satellite forces are determined using Direct Simulation
Monte Carlo (DSMC) [1], which simulates the environment governed by the Boltzmann equation
using representative gas particles with statistically sampled motion and collisions based on the
kinetic theory of gases. A simplified form of the CYGNSS satellite [14] is used for this study,
in which all surfaces are considered to be fully diffusive with a constant surface temperature of
Tw = 300K. Gas-surface interactions are characterized in DSMC using the Diffuse Reflection
Incomplete Accommodation (DRIA) model [15] for an energy flux accommodation of α = 1.

Figure 2: Orbital data corresponding to the full satellite path, with maneuvers highlighted in red.

2



2.2 Embedding Theoretical Baselines

Free-molecular flow theory. The forces acting on the satellite can be preliminarily approximated
using the theory of free-molecular flow to form a physics-informed baseline. The atmosphere at high
orbital altitudes can be highly rarefied with mean free path of the gas particles being significantly
greater than the characteristic length of the satellite, thereby justifying a collisionless environment
(negligible inter-particle collisions). The forces imparted on the satellite are effectively determined by
the interaction of the undisturbed flow with the surface. From these simplifications, the rarefied aero-
dynamics of flat surfaces can be described theoretically [16], which includes an α-parameterization
of its gas-surface interactions [11]. Thus, any satellite geometry can be discretized into a compilation
of flat panels, each oriented at angles θ towards the flow with individual force contributions of
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constant is defined as k and the molar gas constant defined as R. The contributions to the surface-
normal pressure and surface-tangential shear stress coefficients are reconstructed from the local panel’s
theoretical lift and drag properties as Cp̃i = Cd̃i

cos θ + Cl̃i
sin θ and Cτ̃i = Cd̃i

sin θ − Cl̃i
cos θ.

Physics-Informed Baseline (PI-B). A baseline model is pre-trained on free-molecular flow theory
using a physics-informed approach [13], to provide an interpretable approximation of the ground
truth. From a weighted-sum using the mass fractions of the four primary atmospheric constituents,
the resulting approximation for the pressure and shear stress coefficients of the panel can be obtained.
The PI-B learns this theoretical approximation through residual-learning of

fp̃ := Ĉp̃ −
4∑
i

miCp̃i and fτ̃ := Ĉτ̃ −
4∑
i

miCτ̃i (3)

where Ĉp̃ and Ĉτ̃ are the output predictions by PI-B for each theoretical panel. The model undergoes
pre-training by minimizing the loss function defined as L = ExPI-B∼P

[
fp̃

2 + fτ̃
2
]
, in which inputs

to the baseline model are xPI-B = {θ, T∞, V∞,mN,mO,mN2
,mO2

} and sampled from within the
respective bounds defined by the satellite flight path.

In the absence of simulation data, a theoretical free-molecular flow can provide a physically-grounded
approximation for the aerodynamic forces. While useful, there are apparent shortcomings arising
from these simplifications. For instance, the influence of surface concavity is absent as every particle
is reflected only once; local Knudsen numbers can be small at VLEO, hence the frequency of
inter-particle collisions can be considerable; the flow may not be hyperthermal depending on the
environment; and the lack of flow-shielding modelling. By including a shadow analysis [17, 18], the
latter can be better accounted for, albeit building on the hyperthermal flow assumption. Based on
a panel’s global orientation, its theoretical force contribution can be logically masked: if the panel
is located in the flow-shadow of other panels, its force contribution is zero (Ms); if the panel is
back-facing, its force contribution is zero (Mb); if the panel is fully front-facing, its shear stress is
zero (Mf ). By adjusting for the global orientation of the theoretical panel using logical masks, a
low-fidelity baseline prediction of the ground truth can be obtained as

Ĉp̃∗ = Ms ·Mb · Ĉp̃ and Ĉτ̃∗ = Ms ·Mb ·Mf · Ĉτ̃ (4)

where Ĉp̃∗ and Ĉτ̃∗ are the output predictions of the globally-adjusted, physics-informed baseline,
PI-B(G).

Data-driven correction (Corr.) The ground truth force coefficients are expressed as a sum of
the adjusted baseline output and a corrector, i.e., Cp = Cp̃∗ + ∆Cp and Cτ = Cτ̃∗ + ∆Cτ . By
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randomly sampling from the full satellite flight path, a sparse representation of the ground truth can
be established. These sparse samples are used to learn the corrections ∆Cp and ∆Cτ as a non-linear
mapping from the inputs x = {θ, T∞, V∞,mN,mO,mN2 ,mO2 ,Ms,Mb,Mf , c, φ, κ}. Apart from
the baseline inputs xPI-B and masks Ms,Mb,Mf , additional inputs include the panel baricenter c as
a global identifier, and the prescribed pitch and yaw rotations. The full prediction model, PI-B(G) +
Corr., consists of the pre-trained baseline along with the corrector trained on sparse samples.

Training Procedure. In the current work, simple multi-layer perceptrons are used as the neural
architecture for the full model, PI-B(G) + Corr., and its sub-components. The model consists of
four hidden layers with 64 neurons each, in which two belong to PI-B and another two to Corr.
with ReLU activation functions interspersed. For the data-driven components, 3% and 10% of the
full flight path is randomly sampled to form the training and test set, respectively. No ground truth
simulation data is required for physics-informed pre-training. For comparison, the physics-informed
pre-training involved a training cost equivalent to ∼2.5 converged simulation instances, which would
correspond to 0.17% of the full flight path dataset. For the subsequent analysis in Section 3, the full
flight path is considered. All network parameters are optimized up to a fixed number of steps with the
ADAM optimizer and learning rate of 10−4. The pre-trained weights of PI-B are kept fixed during
the data-driven training. Fully data-driven models, Direct, are developed without pre-training using
the same training sets, and contain similar network parameter sizes for comparison.

3 Results and Discussion

Performance Evaluation. In Figure 3, the local force coefficients of Cp and Cτ are integrated to
obtain the satellite drag coefficients CD across the entire 24-hour flight path. The model PI-B(G)
tends to over-predict the drag while Direct under-predicts, with both exhibiting substantial deviations.
Notably, the latter performs much worse than the former in modelling the maneuvers, under data-
scarce conditions. The PI-B(G) + Corr. reconciles the two models to best reflect the ground truth.
In Table 1, the mean absolute percentage error is computed as E

[
|(CD − ĈD) / CD| × 100%

]
over ten randomly-initialized states, of which the flight path on and off maneuvers (MVR.) are also
considered separately. Based on the full flight path, the proposed approach achieved error reductions
by approximate factors of 0.5× and 0.4× from the models trained using only data and only physics,
respectively. However, the extension of Corr. reveals a trade-off in accuracy when on and off
maneuvers.

Limitations. This preliminary investigation uses simple neural architectures to understand the po-
tential and feasibility of embedding pre-trained physics models, to alleviate data requirements for
surrogate modelling of satellite forces. As such, it will be meaningful to consider more complex
architectures and frameworks to assess how well the results hold, especially with scale. By propagat-
ing the satellite with a variable drag over longer time frames, the need for accurate drag prediction
will be better reflected since the position errors are expected to reduce substantially compared to
conventional constant drag models.

Figure 3: Evaluation of satellite CD predictions over the full 24-hour flight path. In general, the
proposed approach (PI-B(G) + Corr.) better reflects the ground truth than the pre-trained baseline
(PI-B(G)) and the model without pre-training (Direct).
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Table 1: Absolute percentage error in CD predictions (%)

Satellite Path

Model Full On MVR. Off MVR.

Direct 7.64 ± 2.40 35.66 ± 31.08 4.57 ± 3.25
PI-B(G) 5.75 ± 0.26 5.47 ± 0.07 5.78 ± 0.29
PI-B(G) + Corr. 2.93 ± 0.09 8.85 ± 3.29 2.29 ± 0.11

4 Conclusion

In this work, a physics-informed pre-training strategy is performed to improve the estimation of
satellite surface forces. In the pre-training strategy, residuals formulated from a theoretical free-
molecular flow are minimized to first develop a low-fidelity baseline, followed by fine-tuning with
scarce samples of the ground truth. The proposed approach demonstrates improvement in accuracy
over data-only and pre-trained only models by approximately 0.5× and 0.4×, respectively, over
a prescribed 24-hour satellite flight path. This motivates further investigations into the use of
physically-inductive bias within surrogate models for satellite design and planning.
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