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Abstract

Climate change is increasing the frequency of extreme precipitation events, mak-
ing weather disasters such as flooding and landslides more likely. The ability to
accurately nowcast precipitation is therefore becoming more critical for safeguard-
ing society by providing immediate, accurate information to decision makers. Mo-
tivated by the recent success of generative models at precipitation nowcasting, this
paper: extends the DYffusion framework to this task and evaluates its performance
at forecasting IMERG satellite precipitation data up to a 4-hour horizon; modifies
the DYffusion framework to improve its ability to model rainfall data; and intro-
duces a novel loss function that combines MSE, MAE and the LPIPS perceptual
score. In a quantitative evaluation of forecasts up to a 4-hour horizon, the modi-
fied DYffusion framework trained with the novel loss outperforms four competitor
models. It has the highest CSI scores for weak, moderate, and heavy rain thresh-
olds and retains an LPIPS score < 0.2 for the entire roll-out, degrading the least as
lead-time increases. The proposed nowcasting model demonstrates visually stable
and sharp forecasts up to a 2-hour horizon on a heavy rain case study1.

1 Introduction

The ability to accurately nowcast (predict up to 6 hours in advance (1)) precipitation, is a vital
task that can help mitigate hazards such as flooding or landslides (2). Globally, heavy precipitation
events are becoming more common due to climate change (3; 4; 5; 6; 7), causing large human dis-
placement, human fatalities (8), and economic cost. Accurate precipitation forecasts are therefore
becoming more instrumental in providing critical information required for weather-dependent de-
cision making that can safeguard society. The absence of effective precipitation models especially
impacts countries that lack access to freely available ground-based radar systems and experience
vulnerability in resource management, agriculture, disaster preparedness, and climate adaptation.

This work evaluates the applicability of a novel probabilistic, spatio-temporal forecasting framework,
DYffusion (9), to precipitation nowcasting. This research is motivated by the recent success of gen-
erative modelling at this task and, DYffusion’s skilful forecasts over long horizons on Navier-Stokes
flows and sea surface temperatures (SST); two systems that exhibit complex dynamics comparable
to that of precipitation. In this study, the focus is on how well DYffusion can forecast up to a 4-
hour horizon, how well these forecasts compare to deterministic and statistical baselines, and what
modifications are required to apply DYffusion to precipitation nowcasting.

1Code is available at https://github.com/Dseal95/DYffcast

Machine Learning and the Physical Sciences Workshop, NeurIPS 2024.

https://github.com/Dseal95/DYffcast


The contributions to the field of precipitation nowcasting can be summarised as follows:

1. Evaluation of a novel modelling framework, alternative to diffusion-based or Generative
Adversarial Network (GAN)-based models, at precipitation nowcasting.

2. A focus on countries lacking freely available ground-based radar and most impacted by
global warming.

3. Introduction of a novel loss function that demonstrates how guiding a pixel-wise distance-
based loss with a perceptual loss improves a model’s ability to learn small-scale features in
imbalanced datasets such as precipitation.

2 Methods

2.1 Data

This research uses the publicly available satellite precipitation product, IMERG. In particular, it uses
the latest version (V07B (10)) of the half-hourly, Early Run product with a 0.1o spatial resolution and
precipitation rates in mm · h−1. The dataset is created from four 128×128 grid boxes that cover the
South American countries: Colombia, Ecuador and Perú. These are regions that are susceptible to
increased flooding and have limited availability of weather radar2. The four 128×128 grid boxes are
stacked into dimensions: (N, S, C, H, W) where N is the number of samples, S is the sequence length
(input and target) and C is the number of channels (1 for IMERG). The data is preprocessed to [0, 1]
using linear normalisation, log(1+X) transform and min-max normalisation. For this research, a 4-
hour horizon or 8×1×128×128 images, was chosen to match the latency of the Early-Run IMERG
product and avoid any discontinuity of real-time data.

2.2 Modelling

2.2.1 DYffusion Framework

The DYffusion framework is outlined in Figure 1. It consists of an Interpolator network, Iϕ and a
Forecastor network, Fθ.

Training. Iϕ is trained to interpolate any timestep of the sequence xt+in , given the initial and final
states, x0 and xt+h, respectively. Fθ is trained to forecast the horizon xt+h given the initial condition
x0 and an intermediate state xt+in . This two-stage training has a constant memory footprint as a
function of h, only requiring x0 and xt+h (plus xt+in during the Interpolator training).

Inference. Given an initial condition, x0, the entire sequence x = [xt+in ]
h
n=1 is generated over

N (or h) auto-regressive steps. At step s = 0 (n = s + 1), Fθ predicts the horizon xs=0
t+h using only

x0. Iϕ then interpolates xt+i1 using x0 and xs=0
t+h. At the next step (s = 1), Fθ predicts the horizon

again xs=1
t+h, using x0 and xt+i1 . xs=1

t+h and x0 are then used to interpolate, xt+i2 . This process is
repeated until Fθ predicts xs=N−1

t+h (N times), using the nearest intermediate value, xt+iN−1
. This

iterative process is analogous to the iterative denoising in standard diffusion models and underpins
the time-coupled, DYnamics informed nature of the DYffusion framework. The final forecast is the
mean of an ensemble of X members.

The probabilistic nature of DYffusion occurs through Monte Carlo dropout. Iϕ is trained with
dropout rates that are enabled during the training (and inference) of Fθ. Enabling dropout dur-
ing training is analogous to Iϕ interpolating xt+in by sampling it from the conditional probability
distribution P (xt+in |x0, xt+h).

2.2.2 DYffusion Key Modifications

For the IMERG dataset, the SST U-Net backbone from DYffusion and parts of the training frame-
work were modified to model the rainfall data. The following key modifications were made:

2According to the World Meteorological Organisation’s (WMO) radar database, South America has roughly
1/4 of North America’s or Europe’s radar (11).
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Figure 1: An illustration of DYffusion sampling: DYffusion forecasts a sequence of N (or h)
timesteps xt+i1 , xt+i2 , ... , xt+h given the initial condition x0. xt+h is forecasted at each step
using x0 and the nearest intermediate value xt+in .

1. Loss Function. Replaced the L1 loss with a novel loss function (referred to as LCB),
combining the Learned Perceptual Image Patch Similarity (LPIPS)(12) score with the class-
weighted Mean Squared Error (MSE) and Mean Absolute Error (MAE) loss proposed in
(13) (referred to as CBLoss in (14)). LCB was constructed as follows:

LCB = (1− α) · LPIPS + α · CBLoss(β) (1)

Based on experimental results during Interpolator training, α was set to 0.6, optimising
for MSE, LPIPS and Critical Success Index (CSI) at varying thresholds. This value slightly
biases the CBLoss towards spatial accuracy, while the perceptual component prevents large-
scale features from dominating and improves image detail. Lower α values (< 0.6) led to
background artefacts and magnitude errors. For the CBLoss, the β scaling term was set to
1.0 to equally weight the MSE and MAE components, and the rainfall classes (in mm ·h−1)
and their associated weights were:

w : w(x) =


1, x ≤ 0.5 2, 0.5 < x ≤ 2 5, 2 < x ≤ 6

10, 6 < x ≤ 10 20, 10 < x ≤ 18 30, 18 < x ≤ 30

50, x > 30

(2)

2. Forecastor Training. Removed any exposure to the horizon xt+h during Forecastor train-
ing to better emulate the sampling process. Referring to Algorithm 1, Stage 2, Step 2 in
the original DYffusion paper, the intermediate values xt+in are now interpolated using the
initial condition x0 and an initial forecast x̂inital

t+h instead of the target xt+h. This initial
forecast is generated using only the initial conditions (Fθ(x0, x0) = x̂initial

t+h ) to directly
replicate the sampling procedure. A separate loss term for the initial forecast is added to
the existing loss in Stage 2, Step 3 of Algorithm 1 in the original DYffusion paper. The
updated loss function (including the one-step-ahead loss) becomes:

Loss = αLinitial + (1− α)[λ1Lforecast + λ2Lone−step−ahead] (3)

Where L represents the loss function and α is used to balance the different terms. For
training, a linear schedule is used to calculate α, starting at α = 1 (decaying to 0 over 20
epochs) to place more emphasis on the initial forecast at the start of training. λ1 and λ2 are
both set to 0.5, inherited from the original DYffusion implementation.

3. Cold Sampling. Clamped the cold sampling update to avoid passing the Interpolator data
/∈ [0, 1]. The cold sampling update from Algorithm 2, Step 4 in the original DYffusion
paper becomes:

x̂t+in+1
= Clamp[a,b](Iϕ(x0, x̂t+h, in+1)− Iϕ(x0, x̂t+h, in) + x̂t+in) (4)

2.2.3 Baselines

We compare DYffusion to auto-regressive implementations of both deterministic and statistical meth-
ods to align more closely with DYffusion’s roll-out inference:
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• ConvLSTM (15): implemented the same 2-layer architecture used on the Radar Echo
dataset, but with increased hidden states (128 vs 64), larger kernels (5×5 vs 3×3), and ad-
ditional pixel-wise dropout (either 0.15 or 0.4) after each ConvLSTM cell for regularisation.
The ConvLSTM was trained to predict the next timestep from the previous 4×1×128×128
images (2 hours).

• Short-Term Ensemble Prediction System (STEPS)(16): implemented in PySteps (17)
following the STEPS example on the PySTEPS website3. The previous 4×1×128×128
images (2 hours) were used as input and the units were transformed from mm · h−1 to dBR
before estimating the motion field and forecasting the next timestep.

3 Results

Table 1: The 4-hour averaged results on the test dataset for each of the evaluated models. The best
metric score is highlighted in black and the second best score is highlighted in blue. The CRPS is
calculated on the transformed data (∈ [0, 1]), explaining the lower magnitude. The CRPS and SSR
metrics for the deterministic ConvLSTM models are zeroed. CSI thresholds were evaluated at 2,
10 and 18 (in mm · h−1) to cover weak, moderate and heavy rain classifications respectively. The
sampling times were recorded using an NVIDIA L4 GPU.

Model ↓ MSE ↓ LPIPS ↑ CSI2 ↑ CSI10 ↑ CSI18 ↓ CRPS ↑ SSR Time [s]

DYffusionLCB 0.0020 0.145 0.270 0.112 0.064 0.013 0.131 3
DYffusionL1 0.0015 0.323 0.227 0.068 0.023 0.010 0.050 3
ConvLSTMLCB 0.0085 0.272 0.139 0.027 0.010 − − 1.2
ConvLSTMBCE 0.0052 0.335 0.165 0.038 0.016 − − 1.2
STEPS 2.4102 0.342 0.140 0.030 0.011 0.013 0.219 2.1

Table 1 shows the 4-hour averaged forecast evaluation metrics for each of the models on the test
dataset. For both DYffusion and the baseline ConvLSTM (15), two models were trained. One
model was trained using the LCB loss and a second model was trained using the model’s native loss
function: L1 loss for DYffusion and binary cross-entropy (BCE) loss for ConvLSTM. The DYffu-
sion and STEPS models are evaluated by taking the mean prediction from a 10-member ensemble.
Figure 2 demonstrates each model’s nowcasting ability on the heavy precipitation event, Cyclone
Yaku (18). The forecasts clearly show the improved sharpness, detail and stability of DYffusionLCB,
especially up to a 2-hour horizon. This is supported by its outperforming CSI and LPIPS scores in
Table 1. DYffusionLCB can distinguish between heavy rain intensities in the band of rain moving
toward the coast, and it tracks the split at the top of the rain-band forming at around t + 120 min.
The ConvLSTMLCB also demonstrates improved sharpness (at earlier timesteps) compared to the
ConvLSTMBCE, indicating the effectiveness of the LCB loss function at capturing the small-scale
features. DYffusionLCB more accurately forecasts Cyclone Yaku’s spatial expansion compared to
STEPS. However, Figure 2 shows that optical flow methods remain effective at earlier timesteps,
before chaotic behaviour emerges.

Computational Resources. DYffusion was trained on an NVIDIA L4 GPU, which is readily ac-
cessible through cloud computing vendors at reasonable costs. Training took 20 minutes per epoch
for the Interpolator (60 epochs, ∼20 hours total) and 1.5 hours per epoch for DYffusion with a 10-
member ensemble (25-30 epochs, ∼40 hours total). The IMERG dataset requires 18GB of storage.

4 Conclusion

In this study, DYffusion has been extended to the task of precipitation nowcasting. The task was to
forecast IMERG precipitation data at 30-minute intervals up to a 4-hour horizon, generating a total
of 8×1×128×128 images. By applying key modifications to the DYffusion framework and intro-
ducing a novel loss function, the modified framework outperforms both deterministic (ConvLSTM)
and statistical (STEPS) baselines. Overall, the initial results of DYffusionLCB suggest that with some

3https://pysteps.readthedocs.io/en/stable/auto_examples/plot_steps_nowcast.html
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Figure 2: The evolution of Cyclone Yaku over 4 hours beginning at 03:00 UTC on March 9, 2023.
The hourly forecast values (undersampled) are shown for each of the five evaluated models.

improvements, the DYffusion framework is a potential candidate for operational precipitation now-
casting. The constant memory footprint associated with the forecast-interpolate process makes it an
attractive alternative to single-pass generative networks.

Limitations. Nowcasting precipitation is more challenging than SST or Navier-Stokes. The initial
task of forecasting the 4-hour horizon from a single timestep is difficult. The implemented U-Net
backbone struggles to not forecast x̂initial

t+h as an expansion or reduction of the initial condition
x0. This ultimately constrains the problem to the spatial domain of x0, contributing to the limited
variability in the ensemble forecasts.

Future Work. The results of (19) demonstrate the importance of high SSR scores for more skilful
precipitation nowcasts. Conditioning the initial forecast x̂initial

t+h with atmospheric information, such
as divergence at 925 hPa and wind speed, is an interesting avenue to explore. The additional physical
context should help the model capture the non-linear chaotic evolution of the rainfall, especially at
earlier timesteps, similar to the motion field in STEPS. This should improve x̂initial

t+h and, therefore,
the overall stochasticity by allowing the framework to sufficiently explore P (xt+i1:t+h|x0).
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