About

The Machine Learning and the Physical Sciences workshop aims to provide an informal, inclusive, and leading-edge venue for discussing research and challenges at the intersection of machine learning (ML) and the physical sciences (PS). This includes the applications of ML to problems in the physical sciences (ML for PS) as well as developments in ML motivated by physical insights (PS for ML).

Physical sciences are defined inclusively, including but not limited to physics, astronomy, cosmology, chemistry, biophysics, materials science, and Earth science.

Recent years have highlighted unique opportunities as well as challenges in incorporating ML workflows as part of the scientific process in many physical sciences. For example, fields focused on fundamental physics discovery, such as particle physics and cosmology, often have stringent requirements for exactness, robustness, and latency that go beyond those typically encountered in other scientific domains and industry applications. Data preservation and workflow reproducibility are other central challenges that need to be addressed in the era of large experiments, collaborations, and datasets. In these fields and others, simulations play a central role in connecting theoretical models to observations. The ubiquity and increasing complexity of simulators in PS has spurred methodological advances in ML, e.g. in simulation-based inference and differentiable programming, that are finding applications far beyond PS, showcasing the bidirectional nature of the PS-ML intersection.

The breadth of work at the intersection of ML and physical sciences is answering many important questions for both fields while opening up new ones that can only be addressed by a joint effort of both communities. By bringing together ML researchers and physical scientists who apply and study ML, we expect to strengthen the much needed interdisciplinary dialogue, introduce exciting new open problems to the broader community, and stimulate the production of new approaches to solving challenging open problems in the sciences. Invited talks from leading individuals in both communities will cover the state-of-the-art techniques and set the stage for this workshop, which will also include contributed talks selected from submissions.

The invited talks program will showcase unique features of the physical sciences that highlight current challenges and bidirectional opportunities in ML and PS. This includes the central role of simulators in the scientific process, the need for rigorous uncertainty quantification, and the development of hardware-software co-design solutions for real-time inference.

A part of the workshop program will be dedicated to the focus area discussing the role of data-driven vs inductive bias-driven methods in machine learning and the physical sciences, centering the emerging role of foundation models and their complementarity with approaches leveraging physical inductive biases. This will feature an overview talk, followed by a moderated panel discussion.

NeurIPS 2024

The Machine Learning and the Physical Sciences 2024 workshop will be held on December 15, 2024 at the Vancouver Convention Center in Vancouver, BC, Canada as a part of the 38th annual conference on Neural Information Processing Systems (NeurIPS). The workshop is planned to take place in a hybrid format inclusive of virtual participation.

Speakers

Panelists

Topic: Data-driven vs inductive bias-driven methods in machine learning and the physical sciences.

Papers

Accepter papers are listed below; papers and posters will be linked after the camera-ready deadline.

2 Neural Infalling Clouds: Increasing the Efficacy of Subgrid Models and Scientific Equation Discovery using Neural ODEs and Symbolic Regression
Brent Tan
4 Meta-Learned Bayesian Optimization for Energy Yield in Inertial Confinement Fusion
Vineet Gundecha; Ricardo Luna Gutierrez; Sahand Ghorbanpour; Desik Rengarajan; Rahman Ejaz; Varchas Gopalaswamy; Riccardo Betti; Soumyendu Sarkar
5 Uncertainty-Penalized Bayesian Information Criterion for Parametric Partial Differential Equation Discovery
Pongpisit Thanasutives; Ken-ichi Fukui
6 Multimodal multi-output ordinal regression for discovering gravitationally-lensed transients
Nicolò Oreste Pinciroli Vago; Piero Fraternali
8 LLM Enhanced Bayesian Optimization for Scientific Applications like Fusion
Sahand Ghorbanpour; Ricardo Luna Gutierrez; Vineet Gundecha; Desik Rengarajan; Ashwin Ramesh Babu; Soumyendu Sarkar
9 Normalising Flow for Joint Cosmological Analysis
Arrykrishna Mootoovaloo; David Alonso; Jaime Ruiz-Zapatero; Carlos Garcia-Garcia
10 Emulation and Assessment of Gradient-Based Samplers in Cosmology
Arrykrishna Mootoovaloo; David Alonso; Jaime Ruiz-Zapatero; Carlos Garcia-Garcia
11 Two-Stage Coefficient Estimation in Symbolic Regression for Scientific Discovery
Masahiro Negishi; Yoshitomo Matsubara; Naoya Chiba; Ryo Igarashi; Yoshitaka Ushiku
13 Path-minimizing Latent ODEs as Inference Models
Matt L. Sampson; Peter Melchior
14 Climate PAL: Climate Analysis through Conversational AI
Sonia Cromp; Behrad Rabiei; Maxwell T. Elling; Alexander J. Herron; Michael Hendrickson
16 Physics-guided Optimization of Photonic Structures using Denoising Diffusion Probabilistic Models
Dongjin Seo; Soobin Um; Sangbin Lee; Jong Chul Ye; Haejun Chung
17 Galaxy Formation and Evolution via Phase-temporal Clustering with FuzzyCat $\circ$ AstroLink
William H. Oliver; Tobias Buck
18 Constrained Synthesis with Projected Diffusion Models
Jacob K Christopher; Stephen Baek; Ferdinando Fioretto
19 ClariPhy: Physics-Informed Image Deblurring with Transformers for Hydrodynamic Instability Analysis
Shai Stamler-Grossman; Nadav Schneider; Gershon Hanoch; Gal Oren
20 Evidential deep learning for probabilistic modelling of extreme storm events
Ayush Khot; Xihaier Luo; Ai Kagawa; Shinjae Yoo
21 Learning Fluid-Directed Rigid Body Control
Karlis Freivalds; Oskars Teikmanis; Laura Leja; Saltanovs Rodions; Ralfs Āboliņš
22 Galaxy Morphology Classification with Counterfactual Explanation
Zhuo Cao; Lena Krieger; Hanno Scharr; Ira Assent
23 Dyson Brownian motion and random matrix dynamics of weight matrices during learning
Gert Aarts; Ouraman Hajizadeh; Biagio Lucini; Chanju Park
24 Towards Using Large Language Models and Deep Reinforcement Learning for Inertial Fusion Energy
Vadim Elisseev; Massimiliano Esposito; James C Sexton
25 A neural surrogate solver for radiation transfer
Aleksei Sorokin; Xiaoyi Lu; Yi Wang
26 Improving Flow Matching for Simulation-Based Inference
Janis Fluri; Thomas Hofmann
28 Automated discovery of large-scale, noise-robust experimental designs in super-resolution microscopy
Carla Rodríguez; Sören Arlt; Leonhard Möckl; Mario Krenn
30 Neural Network Simulation of Time-variant Waves on Arbitrary Grids with Applications in Active Sonar
Yash Ranjith
32 Efficient Generation of Molecular Clusters with Dual-Scale Equivariant Flow Matching
Akshay Subramanian; Shuhui Qu; Cheol Woo Park; Sulin Liu; Janghwan Lee; Rafael Gomez-Bombarelli
33 Hybrid Prior Wavelet Flow For Extragalactic Foreground Simulations
Matiwos Mebratu; W.L. Kimmy Wu
34 Scalable physics-guided data-driven component model reduction for steady Navier-Stokes flow
Seung Whan Chung; Youngsoo Choi; Pratanu Roy; Thomas Roy; Tiras Lin; Du Nguyen; Christopher Hahn; Eric Duoss; Sarah Baker
37 From particle clouds to tokens: building foundation models for particle physics
Joschka Birk; Anna Hallin; Gregor Kasieczka
39 Domain Adaptation of Drag Reduction Policy to Partial Measurements
Anton Plaksin; Georgios Rigas
40 Reconstructing dissipative dynamical systems from spatially and temporally sparse sensors
Alex Guo; Galen T. Craven; Javier E. Santos; Charles D. Young
41 BNEM: A Boltzmann Sampler Based on Bootstrapped Noised Energy Matching
RuiKang OuYang; Bo Qiang; José Miguel Hernández-Lobato
42 The State of Julia for Scientific Machine Learning
Edward Berman; Jacob Ginesin
43 AP-SVM: Unsupervised Data Cleaning for the LEGEND Experiment
Esteban León; Julieta Gruszko; Aobo Li; Brady Bos; M.A. Bahena Schott; John Wilkerson; Reyco Henning; Matthew Busch; Eric L. Martin; Guadalupe Duran; J.R. Chapman
44 ChemLit-QA: A human evaluated dataset for chemistry RAG tasks
Geemi Wellawatte; Philippe Schwaller; Huixuan Guo; Marta Brucka; Anna Borisova; Matthew Hart; Magdalena Lederbauer
45 GraphNeT 2.0 - A Deep Learning Library for Neutrino Telescopes
Rasmus F. Ørsøe; Aske Rosted
46 Towards Agentic AI on Particle Accelerators
Antonin Sulc; Thorsten Hellert; Raimund Kammering; Hayden R. Hoschouer; Jason M. St. John
47 A Poisson-process AutoDecoder for Astrophysical, Time-variable, X-ray Sources
Yanke Song; V Ashley Villar; Juan Rafael Martínez-Galarza
48 A method for identifying causality in the response of nonlinear dynamical systems
Joseph Massingham; Ole Mattis Nielsen; T Butlin
50 Meta-Designing Quantum Experiments with Language Models
Sören Arlt; Haonan Duan; Felix Li; Sang Michael Xie; Yuhuai Wu; Mario Krenn
52 Enhancing Cosmological Simulations with Efficient and Interpretable Machine Learning in the Gabor Wavelet Basis
Cooper Jacobus; Leander Thiele; Peter Harrington; Jia Liu; Zarija Lukic
53 A machine learning approach to duality in statistical physics
Prateek Gupta; Andrea E. V. Ferrari; Nabil Iqbal
54 Synax: A Differentiable and GPU-accelerated Synchrotron Simulation Package
Kangning Diao; Zack Li; Richard D.P. Grumitt; Yi Mao
56 Explicit and data-Efficient Encoding via Gradient Flow
Kyriakos Flouris; Anna Volokitin; Gustav Bredell; Ender Konukoglu
58 Neural network prediction of strong lensing systems with domain adaptation and uncertainty quantification
Shrihan Agarwal; Aleksandra Ciprijanovic; Brian Nord
59 Generation and Human-Expert Evaluation of Interesting Research Ideas using Knowledge Graphs and Large Language Models
Xuemei Gu; Mario Krenn
60 Physics-informed Discovery of State Variables in Second-Order and Hamiltonian Systems
Félix Chavelli; Zi-Yu Khoo; Dawen Wu; Jonathan Sze Choong Low; Stéphane Bressan
61 Neural 3D Reconstruction of 21-cm Tomographic Data
Nashwan Sabti; Ram Purandhar Reddy Sudha; Julian B. Muñoz; Siddharth Mishra-Sharma; Taewook Youn
62 Machine learned reconstruction of tsunami waves from sparse observations
Edward McDugald; Darren Engwirda; Arvind Mohan; Agnese Marcato; Javier E. Santos
65 Toward Model-Agnostic Detection of New Physics Using Data-Driven Signal Regions
Soheun Yi; John Alison; Mikael Kuusela
66 Learning Pore-scale Multi-phase Flow from Experimental Data with Graph Neural Network
Yuxuan Gu; Catherine Spurin; Gege Wen
67 Harnessing Loss Decomposition for Long-Horizon Wave Predictions via Deep Neural Networks
Indu Kant Deo; Rajeev K. Jaiman
68 Scalable nonlinear manifold reduced order model for dynamical systems
Ivan Zanardi; Alejandro N. Diaz; Seung Whan Chung; Marco Panesi; Youngsoo Choi
69 CODES: Benchmarking Coupled ODE Surrogates
Robin Janssen; Immanuel Sulzer; Tobias Buck
70 Transfer Learning in Materials Informatics: structure-property relationships through minimal but highly informative multimodal input
Dario Massa; Grzegorz Kaszuba; Stefanos Papanikolaou; Piotr Sankowski
71 Higher-order cumulants in diffusion models
Gert Aarts; Diaa Eddin Habibi; Lingxiao Wang; Kai Zhou
72 Learning functional forms of fragmentation functions for hadron production using symbolic regression
Nour Makke; Sanjay Chawla
73 Interpreting Multi-band Galaxy Observations with Large Language Model-Based Agents
Zechang Sun; Yuan-Sen Ting; Yaobo Liang; Nan Duan; Song Huang; Zheng Cai
74 Training Hamiltonian neural networks without backpropagation
Atamert Rahma; Chinmay Datar; Felix Dietrich
75 Reconstructing micro-magnetic vector fields based on topological charge distributions via generative neural network systems
Kyra H. M. Klos; Jan Disselhoff; Karin Everschor-Sitte; Friederike Schmid
76 PICL: Learning to Incorporate Physical Information When Only Coarse-Grained Data is Available
Haodong Feng; Yue Wang; Dixia Fan
77 Fast GPU-Powered and Auto-Differentiable Forward Modeling of IFU Data Cubes
Ufuk Çakır; Anna Lena Schaible; Tobias Buck
78 LensPINN: Physics Informed Neural Network for Learning Dark Matter Morphology in Lensing
Ashutosh Ojha; Sergei Gleyzer; Michael W. Toomey; Pranath Reddy
79 Deep Learning Based Superconductivity Prediction and Experimental Tests
Daniel Kaplan; Adam Zheng; Joanna Blawat; Rongying Jin; Viktor Oudovenko; Gabriel Kotliar; Weiwei Xie; Anirvan M. Sengupta
81 Diffusion models for lattice gauge field simulations
Qianteng Zhu; Gert Aarts; Wei Wang; Kai Zhou; Lingxiao Wang
83 First High-Resolution Galaxy Simulations Accelerated by a 3D Surrogate Model for Supernovae
Keiya Hirashima; Kana Moriwaki; Michiko S. Fujii; Yutaka Hirai; Takayuki R. Saitoh; Junichiro Makino; Ulrich Philipp Steinwandel; Shirley Ho
84 Inferring Stability Properties of Chaotic Systems on Autoencoders’ Latent Spaces
Elise Özalp; Luca Magri
86 PhysBERT: A Text Embedding Model for Physics Scientific Literature
Thorsten Hellert; Andrea Pollastro; João Montenegro
88 Cosmological super-resolution of the 21-cm signal
Simon Pochinda; Jiten Dhandha; Anastasia Fialkov; Eloy de Lera Acedo
89 DiffLense: A Conditional Diffusion Model for Super-Resolution of Gravitational Lensing Data
Pranath Reddy; Michael W. Toomey; Hanna Parul; Sergei Gleyzer
90 Accelerated Bayesian parameter estimation and model selection for gravitational waves with normalizing flows
Alicja Polanska; Thibeau Wouters; Peter Tsun Ho Pang; Kaze W. K. Wong; Jason McEwen
91 Gaussian Processes for Probabilistic Estimates of Earthquake Ground Shaking: A 1-D Proof-of-Concept
Sam A. Scivier; Tarje Nissen-Meyer; Paula Koelemeijer; Atilim Gunes Baydin
93 Efficient and Unbiased Sampling of Boltzmann Distributions via Consistency Models
Fengzhe Zhang; Jiajun He; Laurence Illing Midgley; Javier Antoran; José Miguel Hernández-Lobato
94 PCN: a deep learning approach to jet tagging utilizing novel graph construction methods and Chebyshev graph convolutions
Mihir Relan; Yash Semlani; Krithik Ramesh
96 Embedding Theoretical Baselines For Satellite Force Estimations
Benjamin Y. J. Wong; Sai Sudha Ramesh; Khoo Boo Cheong
97 DYffCast: Regional Precipitation Nowcasting Using IMERG Satellite Data. A case study over South America
Daniel Seal; Rossella Arcucci; Salva Rühling Cachay; César Quilodrán-Casas
101 D3PU: Denoising Diffusion Detector Probabilistic Unfolding in High-Energy Physics
Camila Pazos; Shuchin Aeron; Pierre-Hugues Beauchemin; Vincent Croft; Martin Klassen; Taritree Wongjirad
102 CASBI – Chemical Abundance Simulation-Based Inference for Galactic Archeology
Giuseppe Viterbo; Tobias Buck
103 Neural rendering enables dynamic tomography
Ivan Grega; William F Whitney; Vikram Deshpande
104 Evaluating Sparse Galaxy Simulations via Out-of-Distribution Detection and Amortized Bayesian Model Comparison
Lingyi Zhou; Stefan T. Radev; William H. Oliver; Aura Obreja; Zehao Jin; Tobias Buck
107 Domain adaptation in application to gravitational lens finding
Hanna Parul; Michael W. Toomey; Pranath Reddy; Sergei Gleyzer
108 TELD: Trajectory-Level Langevin Dynamics for Versatile Constrained Sampling
Magnus Petersen; Gemma Roig; Roberto Covino
109 Dynamic Curriculum Regularization for Enhanced Training of Physics-Informed Neural Networks
Callum Duffy; Gergana V. Velikova
110 Semi-supervised Super-resolution for Gravitational Lenses with Estimated Degradation Model
Peimeng Guan; Michael W. Toomey; Sergei Gleyzer
111 Using transfer learning to improve the generalization of machine learning models for photometric redshift estimation
Jonathan Soriano; Srinath Saikrishnan; Vikram Seenivasan; Bernie Boscoe; Jack Singal; Tuan Do
112 Can KANs (re)discover predictive models for Direct-Drive Laser Fusion?
Rahman Ejaz; Varchas Gopalaswamy; Aarne Lees; Riccardo Betti; Christopher Kanan
113 Uncertainty Quantification for Martian Surface Spectral Analysis using Bayesian Deep Learning
Mark Hinds; Michael Geyer; Natalie Klein
114 MRI Parameters Mapping via Variational Inference
Moucheng Xu; Yukun Zhou; Tobias Goodwin-Allcock; Kimia Firoozabadi; Joseph Jacob; Daniel C. Alexander; Paddy J. Slator
115 Evolutionary and Transformer based methods for Symbolic Regression
Samyak Jha; Sergei Gleyzer; Eric A. F. Reinhardt; Victor Baules; Francois Charton; Nobuchika Okada
117 MATEY: multiscale adaptive foundation models for spatiotemporal physical systems
Pei Zhang; M. Paul Laiu; Matthew R Norman; Doug Stefanski; John Gounley
118 S-KANformer: Enhancing Transformers for Symbolic Calculations in High Energy Physics
Ritesh Bhalerao; Eric A. F. Reinhardt; Sergei Gleyzer; Nobuchika Okada; Victor Baules
119 Deep Multimodal Representation Learning for Stellar Spectra
Tobias Buck; Christian Schwarz
120 History-Matching of Imbibition Flow in Multiscale Fractured Porous Media Using Physics-Informed Neural Networks (PINNs)
Jassem Abbasi; Ben Moseley; Takeshi Kurotori; Ameya D. Jagtap; Anthony Kovscek; Aksel Hiorth; Pål Østebø Andersen
121 Domain-Adaptive ML for Surface Roughness Predictions in Nuclear Fusion
Shashank Galla; Antonios Alexos; Jay Phil Yoo; Junze Liu; Kshitij Bhardwaj; Sean Hayes; Monika Biener; Pierre Baldi; Satish Bukkapatnam; Suhas Bhandarkar
122 Estimating Dark Matter Halo Masses in Simulated Galaxy Clusters with Graph Neural Networks
Nikhil Garuda; John F Wu; Dylan Nelson; Annalisa Pillepich
123 DeepUQ: A Systematic Comparison of Aleatoric Uncertainties from Deep Learning Methods
Rebecca Nevin; Brian Nord; Aleksandra Ciprijanovic
124 Unsupervised Physics-Informed Super-Resolution of Strong Lensing Images for Sparse Datasets
Anirudh Shankar; Michael W. Toomey; Sergei Gleyzer
125 Integrating Generative and Physics-Based Models for Ptychographic Imaging with Uncertainty Quantification
Canberk Ekmekci; Tekin Bicer; Zichao (Wendy) Di; Junjing Deng; Mujdat Cetin
127 Video-Driven Graph Network-Based Simulators
Franciszek Szewczyk; Gilles Louppe; Matthia Sabatelli
128 Taylor Mode Neural Operators: Enhancing Computational Efficiency in Physics-Informed Neural Operators
Anas Jnini; Flavio Vella
130 Neural Embeddings Evolve as Interacting Particles
Rohan Mehta; Ziming Liu; Max Tegmark
131 Point cloud diffusion models for the Electron-Ion Collider
Fernando Torales Acosta; Vinicius Mikuni; Felix Ringer; Nobuo Sato; Richard Whitehill
133 Galaxy Dust Maps with Conditional Score Models
Jared Siegel; Peter Melchior
134 A perspective on symbolic machine learning in physical sciences
Nour Makke; Sanjay Chawla
135 Physics-informed reduced order model with conditional neural fields
Minji Kim; Tianshu Wen; Kookjin Lee; Youngsoo Choi
136 Digital Discovery of interferometric Gravitational Wave Detectors
Mario Krenn; Yehonathan Drori; Rana Adhikari
137 Geometry-aware PINNs for Turbulent Flow Prediction
Shinjan Ghosh; Julian Busch; Georgia Olympia Brikis; Biswadip Dey
138 Neural Entropy
Akhil Premkumar
139 Learning the Evolution of Physical Structure of Galaxies via Diffusion Models
Andrew Lizarraga; Eric Hanchen Jiang; Jacob Nowack; Yun Qi Li; Ying Nian Wu; Bernie Boscoe; Tuan Do
140 FB-HyDON: Parameter-Efficient Physics-Informed Operator Learning of Complex PDEs via Hypernetwork and Finite Basis Domain Decomposition
Milad Ramezankhani; Rishi Yash Parekh; Anirudh Deodhar; Dagnachew Birru
141 Towards Commercialization of Tokamaks: Time Series Viewmakers for Robust Disruption Prediction
Dhruva Chayapathy; Tavis Siebert; Akshata Kishore Moharir; Lucas Spangher; Om Manoj Patil; Cristina Rea
142 Super-Resolution without High-Resolution label for Black Hole Simulations
Thomas Helfer; Thomas Edwards; Jessica Dafflon; Kaze W. K. Wong; Matthew Lyle Olson
143 Reinforcement Learning for Control of Non-Markovian Cellular Population Dynamics
Josiah C Kratz; Jacob Adamczyk
145 Explainable Deep Learning Framework for SERS Bio-quantification
Jihan K. Zaki; Jakub Tomasik; Sabine Bahn; Jade A. McCune; Pietro Lio; Oren A. Scherman
146 Learning dictionaries of New Physics with sparse local kernels
Gaia Grosso; Philip Harris; Ekaterina Govorkova; Eric A. Moreno; Ryan Raikman
148 Multi-Wavelength Analysis of Kilonova Associated with GRB 230307A: Accelerated Parameter Estimation and Model Selection Through Likelihood-Free Inference
P. Darc; Clecio R. De Bom; Gabriel S. M. Teixeira; Charles Kilpatrick; Nora F. Sherman; Marcelo P. Albuquerque; Paulo Russano
150 Multidimensional Deconvolution with Profiling
Huanbiao Zhu; Mikael Kuusela; Larry Wasserman; Benjamin Nachman; Krish Desai; Vinicius Mikuni
151 A Physics-Informed Autoencoder-NeuralODE Framework (Phy-ChemNODE) for Learning Complex Fuel Combustion Kinetics
Tadbhagya Kumar; Pinaki Pal; Anuj Kumar
152 AICircuit: A Multi-Level Dataset and Benchmark for AI-Driven Analog Integrated Circuit Design
Asal Mehradfar; Xuzhe Zhao; Yue Niu; Sara Babakniya; Mahdi Alesheikh; Hamidreza Aghasi; Salman Avestimehr
153 Real-time Position Reconstruction for the KamLAND-Zen Experiment using Hardware-AI Co-design
Alexander Migala; Eugene Ku; Zepeng Li; Aobo Li
154 Randomized reward redistribution for HPGe waveform classification under weakly-supervised learning setup
Sonata Simonaitis-Boyd; Aobo Li
156 Systematic Uncertainties and Data Complexity in Normalizing Flows
Sandip Roy; Yonatan Kahn; Jessie Shelton; Victoria Tiki
157 Exact and approximate error bounds for physics-informed neural networks
Augusto T. Chantada; Pavlos Protopapas; Luca J. Gomez Bachar; Susana J. Landau; Claudia G. Scóccola
158 Machine Learning for Reparameterization of Multi-scale Closures
Hilary Egan; peter ciecielski; hariswaram sitaraman; megan crowley
159 Uncertainty Quantification From Scaling Laws in Deep Neural Networks
Ibrahim Elsharkawy; Yonatan Kahn; Benjamin Hooberman
160 Reconstruction of Continuous Cosmological Fields from Discrete Tracers with Graph Neural Networks
Yurii Kvasiuk; Jordan Krywonos; Matthew C. Johnson; Moritz Münchmeyer
161 Similarity-Aware Relative Difference Learning for Improved Molecular Activity Prediction
Karina Zadorozhny; Kangway V. Chuang; Bharath Sathappan; Ewan Wallace; Vishnu Sresht; Colin A Grambow
162 Joint cosmological parameter inference and initial condition reconstruction with Stochastic Interpolants
Carolina Cuesta-Lazaro; Chirag Modi; Siddharth Mishra-Sharma; Michael Samuel Albergo; Adrian E. Bayer; Daniel J. Eisenstein
163 Product Manifold Machine Learning for Physics
Nathaniel S. Woodward; Sang Eon Park; Gaia Grosso; Jeffrey Krupa; Philip Harris
164 Reconstructing Quasar Spectra and Measuring the Ly$\alpha$ Forest with {\sc SpenderQ}
ChangHoon Hahn; Satya Gontcho A Gontcho; Peter Melchior
165 Equation-driven Neural Networks for Periodic Quantum Systems
Circe Hsu; Marios Mattheakis; Gabriel R Schleder; Daniel T. Larson
166 Physics-based Differentiable X-ray Rendering Improves Unsupervised 3D CBCT Reconstruction
Mohammadhossein Momeni; Vivek Gopalakrishnan; Neel Dey; Polina Golland; Sarah Frisken
167 GFlowNets for Hamiltonian decomposition in groups of compatible operators
Rodrigo Vargas-Hernandez; Isaac L. Huidobro-Meezs; Jun Dai; Guillaume Rabusseau
168 Symbolic regression for precision LHC physics
Manuel Morales-Alvarado; Josh Bendavid; Daniel Conde; Veronica Sanz; Maria Ubiali
169 An end-to-end generative model for heavy-ion collisions
Jing-An Sun
170 Using Variational Autoencoding to Infer the Masses of Exoplanets Embedded in the Disks of Gas and Dust Orbiting Young Stars
Sayed Shafaat Mahmud; Ramit Dey; Sayantan Auddy; Neal Turner; Jeffrey Bary
171 Neural Networks for Dissipative Physics Using Morse-Feshbach Lagrangian
Veera Sundararaghavan; Jeff Simmons; Megna Shah
175 Transforming Simulation to Data Without Pairing
Eli Gendreau-Distler; Luc Tomas Le Pottier; Haichen Wang
176 Robust Emulator for Compressible Navier-Stokes using Equivariant Geometric Convolutions
Wilson G. Gregory; David W Hogg; Kaze W. K. Wong; Soledad Villar
177 Neural Posterior Unfolding
Jingjing Pan; Benjamin Nachman; Vinicius Mikuni; Jay Chan; Krish Desai; Fernando Torales Acosta
178 Uncertainty Quantification for Surface Ozone Emulators using Deep Learning
Kelsey Doerksen; Yuliya Marchetti; James Montgomery; Yarin Gal; Freddie Kalaitzis; Kazuyuki Miyazaki; Kevin Bowman; Steven Lu
180 AI Meets Antimatter: Unveiling Antihydrogen Annihilations
Ashley Ferreira; Mahip Singh; Andrea Capra; Ina Carli; Daniel Duque Quiceno; Wojciech T. Fedorko; Makoto Fujiwara; Muyan Li; Lars Martin; Yukiya Saito; Gareth Smith; Anqi Xu
181 Correcting misspecified score-based priors for inverse problems: An application to strong gravitational lensing
Gabriel Missael Barco; Alexandre Adam; Connor Stone; Yashar Hezaveh; Laurence Perreault-Levasseur
182 Data-Driven, Parameterized Reduced-order Models for Predicting Distortion in Metal 3D Printing
Indu Kant Deo; Youngsoo Choi; Saad Khairallah; Alexandre Reikher; Maria Strantza
183 Which bits went where? Past and future transfer entropy decomposition with the information bottleneck
Kieran A. Murphy; Zhuowen Yin; Danielle Bassett
185 Variational Loss Landscapes for Periodic Orbits
Leo Yao; Ziming Liu; Max Tegmark
186 Live Constrained Deep Learning Models Optimize Unmanned Underwater Vehicle Control Systems
Brian Lee Zhou; Kamal Viswanath; Jason Geder
188 Amortizing intractable inference in diffusion models for Bayesian inverse problems
Siddarth Venkatraman; Moksh Jain; Luca Scimeca; Minsu Kim; Marcin Sendera; Mohsin Hasan; Luke Rowe; Sarthak Mittal; Pablo Lemos; Emmanuel Bengio; Alexandre Adam; Jarrid Rector-Brooks; Yashar Hezaveh; Laurence Perreault-Levasseur; Yoshua Bengio; Glen Berseth; Nikolay Malkin
189 Interpreting Transformers for Jet Tagging
Aaron Wang; Abhijith Gandrakota; Elham E Khoda; Vivekanand Gyanchand Sahu; Javier Duarte; Priyansh Bhatnagar; Jennifer Ngadiuba
190 Learning Conformal Field Theory with Symbolic Regression: Recovering the Symbolic Expressions for the Energy Spectrum
Haotian Cao; Garrett W. Merz; Kyle Cranmer; Gary Shiu
191 Bumblebee: Foundational Model for Particle Physics Discovery
Andrew J. Wildridge; Jack P. Rodgers; Mia Liu; Yao yao; Andreas W. Jung; Ethan M. Colbert
193 Robust one-shot spectroscopic multi-component gas mixture detection via randomized smoothing
Mohamed Sy; Emad Al Ibrahim; Aamir Farooq
194 Conditional Diffusion Models for Generating Images of SDSS-Like Galaxies
Mikaeel Yunus; John F Wu; Timothy Heckman; Benne W Holwerda
198 Dissipativity-Informed Learning for Chaotic Dynamical Systems with Attractor Characterization
Sunbochen Tang; Themistoklis Sapsis; Navid Azizan
199 No Location Left Behind: Introducing the Fairness Assessment for Implicit Representations of Earth Data
Daniel Cai; Randall Balestriero
200 GeoWavelets: Spherical Wavelets for Fair Implicit Representations of Earth Data
Daniel Cai; Randall Balestriero
201 Graph rewiring for long range-aware protein learning
Ali Hariri; Pierre Vandergheynst
202 Unpaired Translation of Point Clouds for Modeling Detector Response
Mingyang Li; Curtis Hunt; Michelle P. Kuchera; Raghuram Ramanujan; Yassid Ayyad; Adam K. Anthony
203 Convolutional Vision Transformer for Cosmology Parameter Inference
Yash Gondhalekar; Kana Moriwaki
204 Zephyr quantum-assisted hierarchical Calo4pQVAE for particle-calorimeter interactions
Ian Lu; Hao Jia; Sebastian Gonzalez; Deniz Sogutlu; Javier Toledo; Sehmimul Hoque; Abhishek Abhishek; Colin Gay; Roger Melko; Eric Paquet; Geoffrey Fox; Maximilian Swiatlowski; Wojciech T. Fedorko
206 Generation of Air Shower Images for Imaging Air Cherenkov Telescopes using Diffusion Models
Christian Elflein; Stefan Funk; Jonas Glombitza; Vinicius Mikuni; Benjamin Nachman; Lark Wang
207 WOTAN: Weakly-supervised Optimal Transport Attention-based Noise Mitigation
Nathan Suri; Vinicius Mikuni; Benjamin Nachman
208 Discovering How Ice Crystals Grow Using NODE's and Symbolic Regression
Kara D Lamb; Jerry Harrington
209 Learning Locally Adaptive Metrics that Enhance Structural Representation with LAMINAR
Christian Kleiber; William H. Oliver; Tobias Buck
211 Virtual Reality for Understanding Artificial-Intelligence-driven Scientific Discovery with an Application in Quantum Optics
Philipp Schmidt; Carlos Ruiz-Gonzalez; Sören Arlt; Xuemei Gu; Carla Rodríguez; Mario Krenn
212 Clifford Flows
Francesco Alesiani; Takashi Maruyama
214 OrbNet-Spin: Quantum Mechanics Informed Geometric Deep Learning For Open-shell Systems
Beom Seok Kang; Mohammadamin Tavakoli; Vignesh C Bhethanabotla; William Goddard; Anima Anandkumar
215 Bayesian Deconvolution of Astronomical Images with Diffusion Models: Quantifying Prior-Driven Features in Reconstructions
Alessio Spagnoletti; Marc Huertas-Company; Alexandre Boucaud; Wassim Kabalan; Biswajit Biswas
216 Topological data analysis of large swarming dynamics
Yoh-ichi Mototake; Shinichi Ishida; Norihiro Maruyama; Takashi Ikegami
217 Shaping Flames with Differentiable Physics Simulations
Laura Leja; Karlis Freivalds; Oskars Teikmanis
220 Learning Physics From Video: Unsupervised Physical Parameter Estimation for Dynamical Systems
Alejandro Castañeda Garcia; Jan van Gemert; Daan Brinks; Nergis Tomen
221 Flow Annealed Importance Sampling Bootstrap meets Differentiable Particle Physics
Annalena Kofler; Vincent Stimper; Mikhail Mikhasenko; Michael Kagan; Lukas Heinrich
222 Learning Symmetry-Independent Jet Representations via Jet-Based Joint Embedding Predictive Architecture
Subash Katel; Haoyang Li; Zihan Zhao; Javier Duarte
224 Hybrid Summary Statistics
T. Lucas Makinen; Ce Sui; Benjamin Dan Wandelt
225 Testing Uncertainty of Large Language Models for Physics Knowledge and Reasoning
Elizaveta Reganova; Peter Steinbach
226 Uncertainty quantification for fast reconstruction methods using augmented equivariant bootstrap: Application to radio interferometry
Mostafa Cherif; Tobías I. Liaudat; Jonathan Kern; Christophe Kervazo; Jerome Bobin
227 Loss function to optimise signal significance in particle physics
Jai Bardhan; Cyrin Neeraj; Subhadip Mitra; Tanumoy Mandal
228 Toward fast galaxy catalog generation with diffusion models
Tanner Sether; Elena Giusarma; Mauricio Reyes
230 Unlocking Ion-Scale Coherent Structures in the Solar Wind with Machine Learning
Yufei Yang
231 3D-PDR Orion dataset and NeuralPDR: Neural Ordinary Equations for Photodissociation regions
Gijs Vermariën; Serena Viti; Rahul Ravichandran; Thomas G. Bisbas
234 A Platform, Dataset, and Challenge for Uncertainty-Aware Machine Learning
David Rousseau; Wahid Bhimji; Ragansu Chakkappai; Steven Farrell; Aishik Ghosh; Isabelle Guyon; Chris Harris; Elham E Khoda; Benjamin Nachman; Ihsan Ullah; Sascha Diefenbacher; Yuan-Tang Chou; Paolo Calafiura; Yulei Zheng; Jordan Dudley
235 Mean-Field Simulation-Based Inference for Cosmological Initial Conditions
Oleg Savchenko; Florian List; Noemi Anau Montel; Christoph Weniger; Guillermo Franco Abellan
237 Towards long rollout of neural operators with local attention and flow matching-inspired correction: An example in frontal polymerization PDEs
Pengfei Cai; Sulin Liu; Qibang Liu; Philippe Geubelle; Rafael Gomez-Bombarelli
239 Simulation-based inference with scattering representations: scattering is all you need
Kiyam Lin; Benjamin Joachimi; Jason McEwen
240 CURIE: Evaluating LLMs on Multitask Scientific Long-Context Understanding and Reasoning
Hao Cui; Zahra Shamsi; Xuejian Ma; Gowoon Cheon; Shutong Li; Maria Tikhanovskaya; Nayantara Mudur; Martyna Beata Plomecka; Peter Christian Norgaard; Paul Raccuglia; Victor V. Albert; Yasaman Bahri; Pranesh Srinivasan; Haining Pan; Philippe Faist; Brian A Rohr; Michael J. Statt; Dan Morris; Drew Purves; Elise Kleeman; Ruth Alcantara; Matthew Abraham; Muqthar Mohammad; Ean Phing VanLee; Chenfei Jiang; Elizabeth Dorfman; Eun-Ah Kim; Michael Brenner; Sameera S Ponda; Subhashini Venugopalan
241 Differentiable Conservative Radially Symmetric Fluid Simulations and Stellar Winds $\circ$ jf1uids
Leonard Storcks; Tobias Buck
242 Port-Hamiltonian Neural Networks for Learning Coupled Systems and Their Interactions
Razmik Arman Khosrovian; Takaharu Yaguchi; Takashi Matsubara
244 Harnessing Machine Learning for Single-Shot Measurement of Free Electron Laser Pulse Power
Till Korten; Vladimir Rybnikov; Mathias Vogt; Juliane Roensch-Schulenburg; Peter Steinbach; Najmeh Mirian
246 Quantum Wasserstein Compilation: Unitary Compilation using the Quantum Earth Mover's Distance
Marvin Richter; Abhishek Y. Dubey; Axel Plinge; Christopher Mutschler; Daniel Scherer; Michael Hartmann
247 RoBo6: Standardized MMT Light Curve Dataset for Rocket Body Classification
Daniel Kyselica; Marek Suppa; Jiří Šilha; Roman Ďurikovič
248 fBm-Based Generative Inpainting for the Reconstruction of Chromosomal Distances
Alexander Lobashev; Dmitry Guskov; Kirill Polovnikov
249 Enhancing Molecular Expressiveness through Multi-View Representations
Indra Priyadarsini; Seiji Takeda; Lisa Hamada; Hajime Shinohara
251 SE(3) Equivariant Topologies for Structure-based Drug Discovery
Alvaro Prat; Hisham Abdel Aty; Aurimas Pabrinkis; Orestis Bastas; Tanya Paquet; Gintautas Kamuntavičius; Roy Tal
252 Fine-tuning Foundation Models for Molecular Dynamics: A Data-Efficient Approach with Random Features
Pietro Novelli; Luigi Bonati; Pedro J. Buigues; Giacomo Meanti; Lorenzo Rosasco; Michele Parrinello; massimiliano pontil
253 Diffusion-Based Inverse Solver on Function Spaces With Applications to PDEs
Abbas Mammadov; Julius Berner; Kamyar Azizzadenesheli; Jong Chul Ye; Anima Anandkumar
254 PINNfluence: Influence Functions for Physics-Informed Neural Networks
Jonas Naujoks; Aleksander Krasowski; Moritz Weckbecker; Thomas Wiegand; Sebastian Lapuschkin; Wojciech Samek; René Pascal Klausen
255 3D Cloud reconstruction through geospatially-aware Masked Autoencoders
Stella Girtsou; Emiliano Diaz; Lilli Freischem; Joppe Massant; Kyriaki-Margarita Bintsi; Giuseppe Castiglione; William Jones; Michael Eisinger; Juan Emmanuel Johnson; Anna Jungbluth
257 Speak so a physicist can understand you! TetrisCNN for detecting phase transitions and order parameters
Kacper Cybiński; James Enouen; Antoine Georges; Anna Dawid
258 Score-based models for 1/f correlated noise correction in James Webb Space Telescope spectral data
Salma Salhi; Alexandre Adam; Loic Albert; Rene Doyon; Laurence Perreault-Levasseur
259 PolarBERT: A Foundation Model for IceCube
Inar Timiryasov; Jean-Loup Tastet; Oleg Ruchayskiy
260 Open-Source Molecular Processing Pipeline for Generating Molecules
Karan Bania; Shreyas V; Bharath Ramsundar; Jose Siguenza
261 Jrystal: A JAX-based Differentiable Density Functional Theory Framework for Materials
Tianbo Li; Zekun Shi; Stephen Gregory Dale; Giovanni Vignale; Min Lin
262 Sharing Space: A Survey-agnostic Variational Autoencoder for Supernova Science
Kaylee de Soto; Ana Sofia Uzsoy; V Ashley Villar
264 Diffusion-Based Inpainting of Corrupted Spectrogram
Mahsa Massoud; Reyhane Askari-Hemmat; Kai-Feng Chen; Adrian Liu; Siamak Ravanbakhsh
266 Tomographic SAR Reconstruction for Forest Height Estimation
Grace Beaney Colverd; Jumpei Takami; Laura Schade; Karol Bot; Joseph Alejandro Gallego Mejia
267 Hamiltonian Learning using Machine Learning Models Trained with Continuous Measurements
Amit Kiran Rege; Kris Tucker; Conor Smith; Claire Monteleoni
269 Data-Driven Reweighting for Monte Carlo Simulations
Ahmed Youssef; Christian Bierlich; Phil Ilten; Tony Menzo; Stephen Mrenna; Manuel Szewc; Michael K. Wilkinson; Jure Zupan
270 Towards a Reinforcement Learning framework for purely online 3D-molecular structure discovery
Bjarke Hastrup; François R J Cornet; Tejs Vegge; Arghya Bhowmik

Program Committee (Reviewers)

We acknowledge the 333 members of the program committee for providing reviews on a very tight schedule and making this workshop possible. They are listed in alphabetical order below.

Abhijeet Parida (Childrens National Medical ), Abhijith Gandrakota (Fermi National Accelerator Laboratory (Fermilab)), Abhinanda Ranjit Punnakkal (University of Tromsø), Abhishek Abhishek (University of British Columbia), Abhishek Chandra (Eindhoven University of Technology), Abhishikth Mallampalli (University of Wisconsin - Madison), Adrian Perez-Suay (Universidad de Valencia), Agnimitra Dasgupta (University of Southern California), Ahmed MAZARI (Ansys, SimAI team), Ahmed Youssef (University of Cincinnati), Aidan Durr Chambers (Harvard University), Aizhan Akhmetzhanova (Harvard University, Harvard University), Alex Sun (University of Texas at Austin), Alexander Migala (University of California, San Diego), Alexander Thomas Gagliano (Massachusetts Institute of Technology), Alexandre Adam (Université de Montréal), Alexandre Strube (Forschungszentrum Juelich GmbH), Aman Desai (University of Adelaide), AmirEhsan Khorashadizadeh (University of Basel), Amit Kumar Jaiswal (University of Surrey), Anant Wairagade (IEEE Phoenix), Andrew Stevens (OptimalSensing), Andrey A Popov (University of Hawaii at Manoa), Ankita Shukla (University of Nevada, Reno), Anna Dawid (Leiden University, Leiden University), Anna Jungbluth (European Space Agency), Annalena Kofler (Max-Planck Institute), Antonin Sulc (Universität Konstanz), Arvind Mohan (Los Alamos National Laboratory), Arvind Ramanathan (Argonne National Laboratory), Arvind Renganathan (University of Minnesota - Twin Cities), Asal Mehradfar (University of Southern California), Athénaïs Gautier (McGill University), Atul Agrawal (Technische Universität München), Bariscan Kurtkaya (Stanford University), Benjamin Nachman (Lawrence Berkeley National Lab), Benjamin Y. J. Wong (National University of Singapore), Bharath Ramsundar (Deep Forest Sciences), Bilal Thonnam Thodi (New York University), Biprateep Dey (University of Pittsburgh), Biswarup Bhattacharya (Citadel), Biwei Dai (University of California Berkeley), Brian Nord (Fermi National Accelerator Laboratory), Bruno Raffin (INRIA), Carolina Cuesta-Lazaro (Massachusetts Institute of Technology), Cenk Tüysüz (DESY), Cheng Soon Ong (Australian National University), Chenyang Li (Argonne National Laboratory), Christine Allen-Blanchette (Princeton University), Christoph Weniger (University of Amsterdam), Christopher C. Hall (RadiaSoft LLC), Claire David (African Institute for Mathematical Sciences (South Africa)), Claudius Krause (HEPHY), Conrad M Albrecht (Columbia University), Constantin Weisser (Massachusetts Institute of Technology), Daniel Serino (Los Alamos National Laboratory), Danyal Rehman (Mila - Quebec Artificial Intelligence Institute), David Rousseau (IJCLab), Deep Chatterjee (Massachusetts Institute of Technology), Devesh Upadhyay (Saab ), Dimitra Maoutsa (Technische Universität München), Dongjin Seo (Yale University), Duccio Pappadopulo (Bloomberg), Edward Berman (Northeastern University), Elham E Khoda (University of California, San Diego), Eliane Maalouf (Université de Neuchâtel), Elise Özalp (Imperial College London), Elyssa Hofgard (Massachusetts Institute of Technology), Emanuele Usai (The University of Alabama), Engin Eren (Universität Hamburg), Enrico Rinaldi (Quantinuum), Eric Metodiev (Renaissance), Fabian Ruehle (Northeastern University), Fadoua Khmaissia (Bell Labs), Fatih Dinc (University of California, Santa Barbara), Favour Nerrise (Stanford University), Felix Wagner (ETHZ - ETH Zurich), Feng Chen (Stanford University), Fernando Torales Acosta (Lawrence Berkeley National Lab), Feyi Olalotiti (Intel), Francesco Alesiani (NEC), Francisco Villaescusa-Navarro (Princeton University), Franco Pellegrini (International School for Advanced Studies Trieste), Francois Lanusse (CNRS), François Gygi (University of California, Davis), François Rozet (Université de Liège), Gabriel Perdue (Fermi National Accelerator Laboratory), Gadi Naveh (GSK plc), Gaia Grosso (Massachusetts Institute of Technology), Gal Oren (Stanford University), Garrett W. Merz (University of Wisconsin - Madison), Gemma Zhang (Harvard University), George Stein (Layer6 AI), Georges Tod (University Paris Descartes), Gergana V. Velikova (PASQAL), Gert-Jan Both (HHMI Janelia Research Campus), Gijs Vermariën (Leiden Observatory, Leiden University), Gilles Louppe (University of Liège), Gregory Mermoud (HES-SO : UAS Western Switzerland), Gustau Camps-Valls (Universitat de València), H H C (University of California, Merced), Haimeng Zhao (California Institute of Technology), Haodong Feng (Westlake University), Haowei Ni (Johnson and Johnson), Haoxuan Chen (Stanford University), Haoyang Zheng (Purdue University), Harold Erbin (CEA), Henning Kirschenmann (University of Helsinki), Huichi Zhou (Imperial College London), Hunor Csala (University of Utah), Inbar Savoray (University of California, Berkeley), Indu Kant Deo (University of British Columbia), Irina Espejo Morales (International Business Machines), Ivan Grega (University of Cambridge), Jack Collins (Bosch), Jacob A Zwart (U.S. Geological Survey), Jacob Adamczyk (University of Massachusetts Boston), Jan Olle (Max Planck Institute for the Science of Light), Jason McEwen (University College London), Jay Chan (Lawrence Berkeley National Lab), Jay Taneja (University of Massachusetts at Amherst), Jean-roch Vlimant (California Institute of Technology), Jenna Pope (Pacific Northwest National Laboratory), Jeongwhan Choi (Yonsei University), Jesse Thaler (Massachusetts Institute of Technology), Jiahe Huang (University of Michigan - Ann Arbor), Jiajing Chen (New York University), Jianjun Hu (University of South Carolina), Jie Gao (Rutgers University), Jihan K. Zaki (University of Cambridge), Jingjing Pan (Yale University), Jingyi Tang (Stanford University), Jochen Garcke (University of Bonn), Joel Dabrowski (Data61, CSIRO), Johan de Kleer (c-infinity), John F Wu (Space Telescope Science Institute), Jordi Tura (Leiden University), Jose Francisco Ruiz-Munoz (Universidad Nacional de Colombia), Jose Manuel Napoles-Duarte (Universidad Autónoma de Chihuahua), Joseph Alejandro Gallego Mejia (Drexel University), Joshua Isaacson (Fermi National Accelerator Laboratory), Joshua Yao-Yu Lin (Prescient Design/ Genentech), Junichi Tanaka (International Center for Elementary Particle Physics, The University of Tokyo), Junze Liu (University of California, Irvine), Kai Fukami (University of California, Los Angeles), Karolos Potamianos (University of Oxford), Kartik Mathur (Microsoft), Katherine Fraser (University of California, Berkeley), Kathleen Champion (Amazon), Keith Brown (Boston University, Boston University), Keming Zhang (University of California Berkeley), Kieran A Murphy (University of Pennsylvania), Kim Andrea Nicoli (Rheinische Friedrich-Wilhelms Universität Bonn), Kiri Wagstaff (American Association for the Advancement of Science), Krish Desai (University of California, Berkeley), Kyongmin Yeo (International Business Machines), Kyriakos Flouris (Swiss Federal Institute of Technology), Lalit Ghule (Ansys Inc), Lars Doorenbos (Universität Bern), Leander Thiele (Princeton University), Line H Clemmensen (Technical University of Denmark), Lingxiao Wang (RIKEN), Lipi Gupta (Lawrence Berkeley National Lab), Luc Tomas Le Pottier (University of California, Berkeley), Lucas Thibaut Meyer (INRIA), Ludger Paehler (Technical University Munich), MD SAJID (Indian Institute of Technology Indore), MUHAMMAD AMIN NADIM (University of Pegaso), Madhurima Nath (Virginia Polytechnic Institute and State University), Mahsa Massoud (McGill University, McGill University), Mai H Nguyen (University of California, San Diego), Maithili Bhide (University of California, Los Angeles), Mallikarjuna Tupakula (Rochester Institute of Technology), Marco Letizia (University of Genoa), Maria Piles (Universidad de Valencia), Mariano Javier de Leon Dominguez Romero (Universidad Nacional de Córdoba), Mariel Pettee (Lawrence Berkeley National Lab), Marimuthu Kalimuthu (Universität Stuttgart), Marina Meila (University of Washington, Seattle), Mario Krenn (Max Planck Institute for the Science of Light), Marios Mattheakis (Harvard University), Matija Medvidović (ETHZ - ETH Zurich), Matiwos Mebratu (Stanford University), Matt L. Sampson (Princeton University), Matteo Manica (International Business Machines), Maximilian Dax (Max-Planck Institute), Maxwell Xu Cai (SURF Corporative), Micah Bowles (University of Oxford), Michael Deistler (University of Tuebingen), Mike Williams (Massachusetts Institute of Technology), Milind Malshe (Georgia Institute of Technology), Mira Moukheiber (Massachusetts Institute of Technology), Mohammad Shahab Sepehri (University of Southern California), Mohammadamin Tavakoli (California Institute of Technology), Mohannad Elhamod (Virginia Polytechnic Institute and State University), Mridul Khurana (Virginia Polytechnic Institute and State University), Nadim Saad (Northeastern University), Natalie Klein (Los Alamos National Laboratory), Nayantara Mudur (Harvard University), Neel Chatterjee (Intel), Neerav Kaushal (Sail Biomedicines), Negin Forouzesh (California State University, Los Angeles), Nesar Soorve Ramachandra (Argonne National Laboratory), Nick McGreivy (Princeton University), Nicolò Oreste Pinciroli Vago (Polytechnic Institute of Milan), Nils Thuerey (Technical University Munich), Noemi Anau Montel (University of Amsterdam), Olivier Saut (CNRS), Ori Linial (Technion - Israel Institute of Technology, Technion), Othmane Rifki (DESY), Pao-Hsiung Chiu (Institute of High Performance Computing, Singapore, A*STAR), Pedro L. C. Rodrigues (Inria), Peer-timo Bremer (University of Utah), Peimeng Guan (Georgia Institute of Technology), Peter McKeown (CERN), Peter Melchior (Princeton University), Peter Nugent (University of Oklahoma), Peter Steinbach (Helmholtz-Zentrum Dresden-Rossendorf), Phaedon Stelios Koutsourelakis (Technische Universität München), Phan Nguyen (Lawrence Livermore National Labs), Pierre Thodoroff (University of Cambridge), Pietro Vischia (Universidad de Oviedo), Pim De Haan (University of Amsterdam), Pradyun Hebbar (Lawrence Berkeley National Lab), Progyan Das (Indian Institute of Technology, Gandhinagar), Qi Tang (Georgia Institute of Technology), Qiaohao Liang (Massachusetts Institute of Technology), Rafael Gomez-Bombarelli (Massachusetts Institute of Technology), Raghav Kansal (CERN), Raheem Karim Hashmani (University of Wisconsin - Madison), Rahul Ghosh (University of Minnesota, Minneapolis), Rama Vasudevan (Oak Ridge National Laboratory), Rasmus F. Ørsøe (Technische Universität München), Redouane Lguensat (Institut Pierre-Simon Laplace), Remmy Zen (Max Planck Institute for the Science of Light), Reza Akbarian Bafghi (University of Colorado at Boulder), Rhys Goodall (Chemix Inc.), Ricardo Vinuesa (KTH Royal Institute of Technology), Richard M. Feder (University of California, Berkeley), Rikab Gambhir (Massachusetts Institute of Technology), Roberto Bondesan (Imperial College London), Rodrigo Vargas-Hernandez (McMaster University), Rohan Venkat (University of Chicago), Ronan Legin (Université de Montréal), Rutuja Gurav (University of California, Riverside), Ryan Hausen (Johns Hopkins University), Sam Foreman (Argonne National Laboratory), Samson J Koelle (Amazon), Sandeep Madireddy (Argonne National Laboratory), Sankalp Gilda (DevelopYours), Sarvesh Gharat (Indian Institute of Technology, Bombay), Sarvesh Kumar Yadav (Raman Research Institute), Sascha Caron (Radboud University Nijmegen), Savannah Jennifer Thais (Columbia University), Sebastian Dorn (Technical University of Applied Sciences Augsburg), Sebastian Kaltenbach (ETHZ - ETH Zurich), Shaokai Yang (University of Alberta), Shaoming Xu (University of Minnesota - Twin Cities), Shashank Galla (Texas A&M University - College Station), Shixiao Liang (Rice University), Shiyu Wang (Emory University), Shriram Chennakesavalu (Stanford University), Shubhendu Trivedi (Massachusetts Institute of Technology), Siddhant Midha (Princeton University), Siddharth Mishra-Sharma (MIT), Sifan Wang (Yale University), Sining Huang (University of California, Berkeley), Sirisha Rambhatla (University of Waterloo), Somya Sharma (University of Minnesota - Twin Cities), Soronzonbold OTGONBAATAR (Ludwig-Maximilians-Universität München), Sreevani Jarugula (Fermilab), Srinadh Reddy Bhavanam (Clemson University), Srinandan Dasmahapatra (University of Southampton), Stefan M. Wild (Lawrence Berkeley National Lab), Stephan Günnemann (Technical University Munich), Stephen Zhang (University of Melbourne), Sudhakar Pamidighantam (Georgia Institute of Technology), Sui Tang (UC Santa Barbara), Sunbochen Tang (Massachusetts Institute of Technology), Supranta Sarma Boruah (University of Pennsylvania, University of Pennsylvania), Taniya Kapoor (Delft University of Technology), Taoli Cheng (University of Montreal), Tarun Kumar (Hewlett Packard Enterprise), Tatiana Likhomanenko (Apple), Thomas Beckers (Vanderbilt University), Tianji Cai (SLAC National Accelerator Laboratory), Tiffany Fan (Stanford University), Till Korten (Helmholtz Zentrum Dresden Rossendorf (HZDR)), Tobias Buck (Heidelberg University, Ruprecht-Karls-Universität Heidelberg), Tomo Lazovich (U.S. Census Bureau), Tri Nguyen (Massachusetts Institute of Technology), Tristan Cazenave (Université Paris-Dauphine (Paris IX)), Udit Bhatia (IIT Gandhinagar, Dhirubhai Ambani Institute Of Information and Communication Technology), V Ashley Villar (Harvard University), Vahe Gharakhanyan (Facebook), Vignesh C Bhethanabotla (California Institute of Technology), Vinicius Mikuni (Lawrence Berkeley National Lab), Vishal Dey (Ohio State University, Columbus), Vishwa Pardeshi (Fidelity Investments), Vitus Benson (Max-Planck-Institute for Biogeochemistry), Volkan Kumtepeli (University of Oxford), Vudtiwat Ngampruetikorn (University of Sydney), Wai Tong Chung (Together AI), Wenhao Lu (Universität Hamburg), Wonmin Byeon (NVIDIA), Xian Yeow Lee (Hitachi America Ltd.), Xiang Li (University of Minnesota - Twin Cities), Xiao-Yong Jin (Argonne National Laboratory), Xiaowei Jia (University of Pittsburgh), Xihaier Luo (Brookhaven National Laboratory), Xinyan Li (IQVIA), Yangzesheng Sun (Meshy AI), Yannik Glaser (University of Hawaii at Manoa), Yao Fehlis (Advanced Micro Devices), Yilin Chen (Stanford University), Yin Li (Peng Cheng Laboratory), Yingtao Luo (CMU, Carnegie Mellon University), Yiran Wang (Xidian University), Yitian Sun (McGill University), Yixiao Kang (Facebook), Yiyi Tao (ByteDance Inc.), Youngwoo Cho (Korea Advanced Institute of Science and Technology), Yuan Yin (Valeo), Yuanqing Wang (New York University), Yukun Song (University of California, Berkeley), Yunxuan Li (Google), Zefang Liu (Georgia Institute of Technology), Zhe Jiang (University of Florida), Zhida Huang (ByteDance Inc.), Zhuo Chen (Massachusetts Institute of Technology), Ziming Liu (Massachusetts Institute of Technology), Zixing Song (The Chinese University of Hong Kong), Zixuan Wang (CMU, Carnegie Mellon University)

Call for external contributions

In this workshop, we aim to bring together physical scientists and machine learning researchers who work at the intersection of these fields by

  • applying machine learning to problems in the physical sciences -- physics, chemistry, astronomy, earth science, biophysics, and related sciences; and
  • using physical insights to understand and/or improve machine learning techniques, for instance building hybrid machine learning algorithms that leverage physical models with machine learning blocks to create interpretable and accurate predictive models.

To this end, we encourage external contributions, which will be presented during in-person poster sessions during the workshop. Selected contributions will be offered 15-minute contributed talks. We invite researchers to submit original work in the following areas or areas related to them:

  • ML for Physics: Innovative applications of machine learning to the physical sciences; Machine learning model interpretability for obtaining insights into physical systems; Automating/accelerating elements of the scientific process (experimental design, data collection, statistical analysis, etc.).
  • Physics in ML: Strategies for incorporating scientific knowledge or methods into machine learning models and algorithms; Applications of physical science methods and processes to understand, model, and improve machine learning models and algorithms.
  • Other areas: Any other area related to the subject of the workshop, including but not limited to probabilistic methods that are relevant to physical systems, such as deep generative models, scientific foundation models, probabilistic programming, simulation-based inference, variational inference, causal inference, etc.

Submission tracks

  • Research abstract: We invite contributions on either completed or high-quality work-in-progress original research on the topics outlined above.
  • Datasets & Benchmarks abstract: We invite contributions describing a dataset and/or corresponding benchmarks at the intersection of ML and Physical Sciences, in particular showcasing the unique nature of physical datasets and forward models in the context of ML applications. See submission and review guidelines for specific instructions relating to this track.
  • Perspectives abstract: This year, we introduce a new Perspectives track, where researchers have the opportunity to present compelling and grounded viewpoints on recent directions and open questions at the intersection of ML and Physical Sciences. This track encourages disseminating perspectives on past, present, or future challenges of interest to scientists working at the intersection between ML and Physical Sciences. The track aims to stimulate productive and respectful conversations on timely topics that will benefit from the ML4PS workshop's attendees' input. Position papers should meet standard scientific rigor, including using evidence and reasoning to support claims, including relevant background and context, and attributing others' work via appropriate citations. Accepted Perspectives will be presented at the workshop during the poster sessions.

Submission instructions

Submissions should be anonymized short papers (extended abstracts) up to 4 pages excluding references. We invite authors to follow the guidelines and best practices from the NeurIPS conference (see also the main conference Datasets & Benchmarks call for guidelines pertaining to the corresponding track). Please ensure that your paper is approachable by someone not an expert in your specific area of physical science. For example, please avoid or at least define jargon. We reserve the right to desk reject any submissions that do not conform to the format. The review process is double-blind (optionally, single-blind for the Datasets & Benchmarks track). All authors must be registered as authors at the time of submission. We will not allow authors to be added after the review process has begun. This workshop is not archival so we will consider papers containing content that is published in an archival venue other than the main NeurIPS conference (e.g. a physics journal). However, such papers will likely need to be rewritten to fit the format and venue.

Submit your work on the submission portal. See submission and review guidelines for important instructions on preparing contributions as well as details on how they will be evaluated.

Submit contributions Submission guidelines

Code sharing & reproducibility guidance: While we do not enforce it, we will highlight submissions containing documented code and reproducible workflows through a Reproducibility Badge.

Double-submission policy: While we primarily encourage the submission of original pieces of work, we also accept submissions that are extended abstract versions of already published work if their topic fits particularly well with the workshop's scope. In contrast, with the objective of respecting the hard work of reviewers and giving equal chances to all submissions, we strictly prohibit submitting to multiple workshops simultaneously. Submissions flagged as coincidentally submitted to multiple NeurIPS workshops will be desk rejected.

Important dates

  • Submission Deadline: September 9, 2024, 23:59 AoE
  • Review Deadline (Tentative): October 2, 2024, 23:59 AoE
  • Author (accept/reject) notification: October 9, 2024, 23:59 AoE
  • Camera-ready paper and poster deadline: December 1, 2024, 23:59 AoE
  • Workshop: December 15, 2024

Organizers

For questions and comments, please contact us at ml4ps@googlegroups.com.

Steering Committee

Location

NeurIPS 2024 will take place at the Vancouver Convention Center, 1055 Canada Pl, Vancouver, BC V6C 0C3, Canada.